基于分布式关系型数据库,实现轻松应对百亿级数据分析场景解决方案

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: MyCat是什么?从定义和分类来看,它是一个开源的分布式数据库系统,是一个实现了MySQL协议的服务器,前端用户可以把它看作是一个数据库代理,用MySQL客户端工具和命令行访问,而其后端可以用MySQL原生协议与多个MySQL服务器通信,也可以用JDBC协议与大多数主流数据库服务器通信,其核心功能是分表分库读写分离,即将一个大表水平分割为N个小表,存储在后端MySQL服务器里或者其他数据库里。也可以指定多个写库多个读库。MyCat发展到目前的版本,已经不是一个单纯的MySQL代理了,它的后端可以支持MySQL、SQL Server、Oracle、DB2、PostgreSQL等主流数据库

MyCat是什么?

从定义和分类来看,它是一个开源的分布式数据库系统,是一个实现了MySQL协议的服务器,前端用户可以把它看作是一个数据库代理,用MySQL客户端工具和命令行访问,而其后端可以用MySQL原生协议与多个MySQL服务器通信,也可以用JDBC协议与大多数主流数据库服务器通信,其核心功能是分表分库读写分离,即将一个大表水平分割为N个小表,存储在后端MySQL服务器里或者其他数据库里。也可以指定多个写库多个读库。

MyCat发展到目前的版本,已经不是一个单纯的MySQL代理了,它的后端可以支持MySQL、SQL Server、Oracle、DB2、PostgreSQL等主流数据库,也支持MongoDB这种新型NoSQL方式的存储,未来还会支持更多类型的存储。而在最终用户看来,无论是那种存储方式,在MyCat里,都是一个传统的数据库表,支持标准的SQL语句进行数据的操作,这样一来,对前端业务系统来说,可以大幅降低开发难度,提升开发速度。

MyCat可以干什么?

单纯的读写分离,此时配置最为简单,支持读写分离,主从切换

分表分库,对于超过 1000 万的表进行分片,最大支持 1000 亿的单表分片

多租户应用,每个应用一个库,但应用程序只连接 Mycat,从而不改造程序本身,实现多租户化

报表系统,借助于 Mycat 的分表能力,处理大规模报表的统计

替代 Hbase,分析大数据

作为海量数据实时查询的一种简单有效方案,比如 100 亿条频繁查询的记录需要在 3 秒内查询出来结果

MyCat分布式架构设计:

image.png

                                                                                                                                          百亿级数据横向分片存储于数据分析架构

整体思路:

(1)利用mycat的分库分表规则,将百亿级数据横向分摊到不同的节点上;

(2)每个节点上实现一主多备,实现数据备份与读写分离;

(3)所有的写操作首先会在mycat中根据规则计算,路由到指定的节点上写操作;

(4)聚合查询mycat会分摊到各个节点上去计算之后,再基于节点的结果进行汇总处理;

(5)利用NBI大数据可视化分析工具与Mycat无缝连接;

(6)通过NBI大数据可视化分析工具提供的拖拽式分析,可以快速完成各类分析报告和百亿级数据,秒级响应的用户体验。

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
6月前
|
存储 SQL 微服务
常用的分布式事务解决方案(三)
常用的分布式事务解决方案(三)
|
6月前
|
关系型数据库 MySQL
常见分布式事务的解决方案(一)
常见分布式事务的解决方案(一)
|
2月前
|
存储 关系型数据库 分布式数据库
[PolarDB实操课] 01.PolarDB分布式版架构介绍
《PolarDB实操课》之“PolarDB分布式版架构介绍”由阿里云架构师王江颖主讲。课程涵盖PolarDB-X的分布式架构、典型业务场景(如实时交易、海量数据存储等)、分布式焦点问题(如业务连续性、一致性保障等)及技术架构详解。PolarDB-X基于Share-Nothing架构,支持HTAP能力,具备高可用性和容错性,适用于多种分布式改造和迁移场景。课程链接:[https://developer.aliyun.com/live/253957](https://developer.aliyun.com/live/253957)。更多内容可访问阿里云培训中心。
[PolarDB实操课] 01.PolarDB分布式版架构介绍
|
3月前
|
NoSQL Java Redis
秒杀抢购场景下实战JVM级别锁与分布式锁
在电商系统中,秒杀抢购活动是一种常见的营销手段。它通过设定极低的价格和有限的商品数量,吸引大量用户在特定时间点抢购,从而迅速增加销量、提升品牌曝光度和用户活跃度。然而,这种活动也对系统的性能和稳定性提出了极高的要求。特别是在秒杀开始的瞬间,系统需要处理海量的并发请求,同时确保数据的准确性和一致性。 为了解决这些问题,系统开发者们引入了锁机制。锁机制是一种用于控制对共享资源的并发访问的技术,它能够确保在同一时间只有一个进程或线程能够操作某个资源,从而避免数据不一致或冲突。在秒杀抢购场景下,锁机制显得尤为重要,它能够保证商品库存的扣减操作是原子性的,避免出现超卖或数据不一致的情况。
125 10
|
2月前
|
关系型数据库 分布式数据库 PolarDB
[PolarDB实操课] 02.使用云起实验室资源快速体验PolarDB分布式版
本次课程由阿里云PolarDB开源架构师黄心雨分享,重点介绍如何使用云起实验室资源快速体验PolarDB分布式版。主要内容包括: 1. **PolarDB-X的四种安装方法**:Docker、PXD工具、Kubernetes和源码编译。 2. **容器技术简介**:解释容器在云原生环境中的作用,解决代码跨环境迁移问题。 3. **云起实验室实操**:通过云起实验室提供的零门槛平台,快速部署PolarDB-X,体验其主要功能。 4. **课程小结**:总结PolarDB-X的安装方式及实际操作步骤,并展望后续课程内容。
|
3月前
|
Cloud Native 关系型数据库 分布式数据库
PolarDB 分布式版 V2.0,安全可靠的集中分布式一体化数据库管理软件
阿里云PolarDB数据库管理软件(分布式版)V2.0 ,安全可靠的集中分布式一体化数据库管理软件。
|
4月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
141 8
|
3月前
|
调度 数据库
什么场景下要使用分布式锁
分布式锁用于确保多节点环境下的资源互斥访问、避免重复操作、控制并发流量、防止竞态条件及任务调度协调,常见于防止超卖等问题。
79 4
|
4月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
91 5
|
5月前
|
NoSQL Java Redis
京东双十一高并发场景下的分布式锁性能优化
【10月更文挑战第20天】在电商领域,尤其是像京东双十一这样的大促活动,系统需要处理极高的并发请求。这些请求往往涉及库存的查询和更新,如果处理不当,很容易出现库存超卖、数据不一致等问题。
120 1