核心特性—分布式线性扩展

简介: 史上最优惠活动:阿里云企业云服务器全场2折起

p326295.png

扩容迁移

随着业务的增长,数据量越来越大,往往需要添加更多的存储节点以承载更多的数据。当新的存储节点加入集群时,PolarDB-X将自动触发扩容任务,将数据进行再平衡(Rebalance)。

以下图为例,orders表原本分布在4个数据节点上。进行扩容后,集群的数据节点数量从4个增加到6个,触发再平衡任务,将部分数据分区从旧节点移动到新节点上。这一过程在后台利用空闲资源完成,对业务线上流量无影响。p326297.png

表组

为了提升Join查询性能,PolarDB-X推荐根据业务场景设计各个表的分区键,使得有关联关系的表具有相同的分区方式。

例如下图中,user、orders、lineitem、delivery这四张表都以HASH(user_id)作为分区函数,对于下面的查询可以下推到存储节点上执行,性能更好。


SELECT * FROM user, orders WHERE user.id = orders.user_id WHERE user.id = ...

PolarDB-X引入了表组(Table Group)概念来描述分区方式相同的表。通常情况下,分区函数以及列类型相同的表会被隐式地自动归入同一表组中。表组内的分区组(Partition Group)包含了这些表对应的分区。p326298.png

表组的概念对于分区的迁移、分裂与合并至关重要。在上面的例子中,如果对user表的某个分区进行迁移而不迁移orders表的对应分区,那么上文中的查询将无法下推到存储节点,导致性能大幅下降。但有了表组的概念之后,由于user表和orders表位于同一表组中,它们的分区迁移、分裂与合并都会同步进行,解决了上述的问题。

相关文章
|
6月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
阿里云PolarDB云原生数据库在TPC-C基准测试中以20.55亿tpmC的成绩刷新世界纪录,展现卓越性能与性价比。其轻量版满足国产化需求,兼具高性能与低成本,适用于多种场景,推动数据库技术革新与发展。
|
5月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
|
Kubernetes 负载均衡 算法
如何在kubernetes中实现分布式可扩展的WebSocket服务架构
如何在kubernetes中实现分布式可扩展的WebSocket服务架构
317 1
|
存储 负载均衡 中间件
构建可扩展的分布式数据库:技术策略与实践
【8月更文挑战第3天】构建可扩展的分布式数据库是一个复杂而具有挑战性的任务。通过采用数据分片、复制与一致性模型、分布式事务管理和负载均衡与自动扩展等关键技术策略,并合理设计节点、架构模式和网络拓扑等关键组件,可以构建出高可用性、高性能和可扩展的分布式数据库系统。然而,在实际应用中还需要注意解决数据一致性、故障恢复与容错性以及分布式事务的复杂性等挑战。随着技术的不断发展和创新,相信分布式数据库系统将在未来发挥更加重要的作用。
|
分布式计算 API 对象存储
Ray是一个开源的分布式计算框架,用于构建和扩展分布式应用。它提供了简单的API,使得开发者可以轻松地编写并行和分布式代码,而无需担心底层的复杂性。
Ray是一个开源的分布式计算框架,用于构建和扩展分布式应用。它提供了简单的API,使得开发者可以轻松地编写并行和分布式代码,而无需担心底层的复杂性。
2057 11
|
机器学习/深度学习 分布式计算 PyTorch
构建可扩展的深度学习系统:PyTorch 与分布式计算
【8月更文第29天】随着数据量和模型复杂度的增加,单个GPU或CPU已无法满足大规模深度学习模型的训练需求。分布式计算提供了一种解决方案,能够有效地利用多台机器上的多个GPU进行并行训练,显著加快训练速度。本文将探讨如何使用PyTorch框架实现深度学习模型的分布式训练,并通过一个具体的示例展示整个过程。
473 0
|
存储 缓存 自然语言处理
Lettuce的特性和内部实现问题之分布式环境中消息发送时的问题如何解决
Lettuce的特性和内部实现问题之分布式环境中消息发送时的问题如何解决
|
13天前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
|
2月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
6月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
545 0
分布式爬虫框架Scrapy-Redis实战指南

热门文章

最新文章