如何使用阿里云机器学习PAI的离线周期性调度功能

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介:

背景

离线调度功能是机器学习的常见场景,用户需要通过离线调度功能,周期性的更新模型。阿里云机器学习PAI可以帮助用户构建模型训练的pipline,大数据开发套件是一套阿里云飞天系统的管理运维平台,目前PAI和大数据开发套件已经打通,可以实现机器学习实验的周期性调度。

第一步.建立PAI实验

首先建立一个机器学习实验,在本案例中我们以一个深度学习实验为例。需要记住实验名以便在调度的时候进行选择,如图红框所示。

第二步.进入大数据开发套件工作空间

进入数加大数据开发套件,如图:

大数据开发套件与机器学习PAI共用一套项目,选择需要调度的实验所在的项目,点击进入工作空间。

第三步.新建节点调度任务

点击新建,选择任务。

在新建任务的配置中,选择节点任务,类型选择机器学习。

第四步.配置调度任务

建立了节点任务之后,可以选择对应的需要调度的机器学习实验,并且可以在右边的配置栏进行配置和相关参数的设定。

点击提交即可,注意:提交的作业从第二天开始生效。

第五步.任务日志查询

提交调度任务之后,可以点击前往运维进行日志查看。

在运维中心可以全方位的观察机器学习任务的运行情况以及系统日志。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
18天前
|
人工智能 调度 芯片
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
|
21天前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
18天前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
|
1月前
|
缓存 监控 异构计算
PAI-Rec相关的各种功能
PAI-Rec相关、EasyRec的Processor优化 和使用
46 2
|
3月前
|
机器学习/深度学习 存储 运维
探索未来:结合机器学习功能拓展Elasticsearch应用场景
【10月更文挑战第8天】随着数据量的爆炸性增长,高效的数据存储、检索和分析变得越来越重要。Elasticsearch 作为一个分布式的搜索和分析引擎,以其强大的全文搜索能力、实时分析能力和可扩展性而闻名。近年来,随着机器学习技术的发展,将机器学习集成到 Elasticsearch 中成为了一种新的趋势,这不仅增强了 Elasticsearch 的数据分析能力,还开拓了一系列新的应用场景。
96 7
|
4月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
195 8
|
3月前
|
机器学习/深度学习 算法 数据可视化
机器学习的核心功能:分类、回归、聚类与降维
机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习。
87 0
|
4月前
|
机器学习/深度学习 人工智能 搜索推荐
如何让你的Uno Platform应用秒变AI大神?从零开始,轻松集成机器学习功能,让应用智能起来,用户惊呼太神奇!
【9月更文挑战第8天】随着技术的发展,人工智能与机器学习已融入日常生活,特别是在移动应用开发中。Uno Platform 是一个强大的框架,支持使用 C# 和 XAML 开发跨平台应用(涵盖 Windows、macOS、iOS、Android 和 Web)。本文探讨如何在 Uno Platform 中集成机器学习功能,通过示例代码展示从模型选择、训练到应用集成的全过程,并介绍如何利用 Onnx Runtime 等库实现在 Uno 平台上的模型运行,最终提升应用智能化水平和用户体验。
80 1
|
4月前
|
机器学习/深度学习 存储 数据挖掘
Hologres 与机器学习的融合:为实时分析添加预测性分析功能
【9月更文第1天】随着数据科学的发展,企业越来越依赖于从数据中获取洞察力来指导决策。传统的数据仓库主要用于存储和查询历史数据,而现代的数据仓库如 Hologres 不仅提供了高性能的查询能力,还能够支持实时数据分析。将 Hologres 与机器学习技术相结合,可以在实时数据流中引入预测性分析,为企业提供更深入的数据洞见。本文将探讨如何将 Hologres 与机器学习集成,以便实现实时的预测性分析。
107 4
|
5月前
|
C# 机器学习/深度学习 搜索推荐
WPF与机器学习的完美邂逅:手把手教你打造一个具有智能推荐功能的现代桌面应用——从理论到实践的全方位指南,让你的应用瞬间变得高大上且智能无比
【8月更文挑战第31天】本文详细介绍如何在Windows Presentation Foundation(WPF)应用中集成机器学习功能,以开发具备智能化特性的桌面应用。通过使用Microsoft的ML.NET框架,本文演示了从安装NuGet包、准备数据集、训练推荐系统模型到最终将模型集成到WPF应用中的全过程。具体示例代码展示了如何基于用户行为数据训练模型,并实现实时推荐功能。这为WPF开发者提供了宝贵的实践指导。
75 0

相关产品

  • 人工智能平台 PAI