Python自动化办公之 Excel 自动绘制图表

简介: Python自动化办公之 Excel 自动绘制图表

今天的主题是 Excel,相信大家都比较熟悉吧。而且我相信,大家在日常使用 Excel 的时候,肯定会遇到很多重复繁琐的工作,因为我也同样遇到过。这个时候我通常都会思考下,有没有办法让繁琐的事情变得简单些呢,毕竟我们是 Python 使用者嘛!


所以我个人在工作当中还是积累来一些 Excel 自动化相关都经验都,在后面都文章当中,我会陆续推出 Excel、PDF 等等相关软件都自动化内容,感兴趣都同学记得来看哦!

今天我们d的主题就是为 Excel 自动添加图表,实现起来很简单,保证五分钟完事儿!

微信图片_20220522233615.jpg


基本原理


这里我们使用 xlsxwriter 这个库,简直不要太强大!

首先我们先来看下如何通过这个库来编辑 Excel 呢

import xlsxwriter
# 创建一个excel
workbook = xlsxwriter.Workbook("chart.xlsx")
# 创建一个sheet
worksheet = workbook.add_worksheet()


对于创建 Excel 和新增 sheet 都没啥说的,基本套路搞定!

# 自定义样式,加粗
bold = workbook.add_format({'bold': 1})
# 向excel中写入数据,建立图标时要用到
headings = ['Number', 'testA', 'testB']
data = [
    ['2020-9-1', '2020-9-2', '2020-9-3', '2020-9-4', '2020-9-5', '2020-9-6'],
    [10, 40, 50, 20, 10, 50],
    [30, 60, 70, 50, 40, 30],
]
# 写入表头
worksheet.write_row('A1', headings, bold)
# 写入数据
worksheet.write_column('A2', data[0])
worksheet.write_column('B2', data[1])
worksheet.write_column('C2', data[2])


这里,我们定义了一些测试数据,然后通过 write_row 函数写入表头,通过 write_column 函数来按列写入数据,此时我们得到的 Excel 应该是如下的


微信图片_20220522233620.png


画图开始


下面就是重点了,我们要看是根据测试数据来画图表了

# 创建一个柱状图(line chart)
chart_col = workbook.add_chart({'type': 'line'})
# 配置第一个系列数据
chart_col.add_series({
    # 这里的sheet1是默认的值,因为我们在新建sheet时没有指定sheet名
    # 如果我们新建sheet时设置了sheet名,这里就要设置成相应的值
    'name': '=Sheet1!$B$1',
    'categories': '=Sheet1!$A$2:$A$7',
    'values':   '=Sheet1!$B$2:$B$7',
    'line': {'color': 'red'},
})
# 配置第二个系列数据
chart_col.add_series({
    'name': '=Sheet1!$C$1',
    'categories':  '=Sheet1!$A$2:$A$7',
    'values':   '=Sheet1!$C$2:$C$7',
    'line': {'color': 'yellow'},
})


通过 add_chart 函数来新增一个图表,type 就是 图表都类型

而对于 add_series 就是具体都图表数据信息了,相信也是一目了然的!

最后再设置 X、Y 轴的信息,并设置下图表所在的位置就完成了

# 设置图表的title 和 x,y轴信息
chart_col.set_title({'name': 'The test Analysis'})
chart_col.set_x_axis({'name': 'Test number'})
chart_col.set_y_axis({'name':  'Sample length (mm)'})
# 设置图表的风格
chart_col.set_style(1)
# 把图表插入到worksheet并设置偏移
worksheet.insert_chart('A10', chart_col, {'x_offset': 25, 'y_offset': 10})
workbook.close()


微信图片_20220522233731.png

当然的对于画柱状图,饼图等都是类似的,我们也就不再重复了。

下一次,我们就来实现根据已有的数据,如何自动生成我们需要的图表,而且如果我想自动发送给某些人呢,能不能全程自动化搞定呢!

好了,今天就分享到这里

相关文章
|
17天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
9天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
48 8
|
1月前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
95 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
14天前
|
机器学习/深度学习 前端开发 数据处理
利用Python将Excel快速转换成HTML
本文介绍如何使用Python将Excel文件快速转换成HTML格式,以便在网页上展示或进行进一步的数据处理。通过pandas库,你可以轻松读取Excel文件并将其转换为HTML表格,最后保存为HTML文件。文中提供了详细的代码示例和注意事项,帮助你顺利完成这一任务。
27 0
|
1月前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
70 5
|
2月前
|
Python
python读写操作excel日志
主要是读写操作,创建表格
66 2
|
2月前
|
机器学习/深度学习 人工智能 运维
构建高效运维体系:从自动化到智能化的演进
本文探讨了如何通过自动化和智能化手段,提升IT运维效率与质量。首先介绍了自动化在简化操作、减少错误中的作用;然后阐述了智能化技术如AI在预测故障、优化资源中的应用;最后讨论了如何构建一个既自动化又智能的运维体系,以实现高效、稳定和安全的IT环境。
75 4
|
2月前
|
运维 Linux Apache
,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具
【10月更文挑战第7天】随着云计算和容器化技术的发展,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具,通过定义资源状态和关系,确保系统始终处于期望配置状态。本文介绍Puppet的基本概念、安装配置及使用示例,帮助读者快速掌握Puppet,实现高效自动化运维。
65 4
|
21天前
|
机器学习/深度学习 运维 监控
智能化运维:从自动化到AIOps的演进之路####
本文深入探讨了IT运维领域如何由传统手工操作逐步迈向高度自动化,并进一步向智能化运维(AIOps)转型的过程。不同于常规摘要仅概述内容要点,本摘要将直接引入一个核心观点:随着云计算、大数据及人工智能技术的飞速发展,智能化运维已成为提升企业IT系统稳定性与效率的关键驱动力。文章详细阐述了自动化工具的应用现状、面临的挑战以及AIOps如何通过预测性分析和智能决策支持,实现运维工作的质变,引领读者思考未来运维模式的发展趋势。 ####
|
21天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的崛起背景,深入分析了其核心概念、关键技术、应用场景及面临的挑战,并对比了传统IT运维模式,揭示了AIOps如何引领运维管理向更高效、智能的方向迈进。通过实际案例分析,展示了AIOps在不同行业中的应用成效,为读者提供了对未来智能运维趋势的洞察与思考。 ####
52 1