Java并发 --- CAS解析(对比synchronized )

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: Java并发 --- CAS解析(对比synchronized )

什么是 CAS



  • CAS,compare and swap的缩写,中文翻译成比较并交换。CAS指令在Intel CPU上称为CMPXCHG指令,它的作用是将指定内存地址的内容与所给的某个值相比,如果相等,则将其内容替换为指令中提供的新值,如果不相等,则更新失败。
  • 从内存领域来说这是乐观锁,因为它在对共享变量更新之前会先比较当前值是否与更新前的值一致,如果是,则更新,如果不是,则无限循环执行(称为自旋),直到当前值与更新前的值一致为止,才执行更新。
  • CAS 有 3 个操作数,内存值 V,旧的预期值 A,要修改的新值 B。当且仅当预期值 A 和内存值 V 相同时,将内存值 V 修改为 B,否则什么都不做。


那些地方采用了 CAS 机制


  • java.util.concurrent.atomic 包下,一系列以 Atomic 开头的包装类。例如AtomicBooleanAtomicIntegerAtomicLong 等,它们就是典型的利用 CAS 机制实现的原子操作类。
  • 此外,Lock 系列类的底层实现以及 Java 1.6 在 synchronized 转换为重量级锁之前,也会采用到 CAS 机制。


CAS底层实现



简单分析一下AtomicInteger的incrementAndGet的实现。

public final int incrementAndGet() {
    for (;;) {
        int current = get();
        int next = current + 1;
        if (compareAndSet(current, next))
            return next;
    }
}
private volatile int value;
public final int get() {
    return value;
}


这段代码是一个无限循环,也就是CAS的自旋。循环体当中做了三件事:


  • 获取当前值。
  • 当前值+1,计算出目标值。
  • 进行CAS操作,如果成功则跳出循环(当前值和目标值相等),如果失败则重复上述步骤。


注意:


  • 这里需要注意的重点是 get 方法,这个方法的作用是获取变量的当前值。
  • 如何保证获得的当前值是内存中的最新值呢?很简单,用volatile关键字来保证。


拓展一下:while(1) 和 for(;;)两种死循环:

while(1) :
  编译前              编译后 
while (1);         mov eax,1  
                    test eax,eax 
                    je foo+23h
                    jmp foo+18h
 for(;;):
    编译前              编译后 
for (;;);          jmp foo+23h


总结:宏观功能相同的,但是底层编译后代码简洁很多。


那么compareAndSet方法如何保证原子性操作呢?

public final boolean compareAndSet(int expect, int update) {
     return unsafe.compareAndSwapInt( this, valueOffset, expect, update);
}


compareAndSet方法的实现很简单,只有一行代码。这里涉及到两个重要的对象,一个是unsafe,一个是valueOffset


  • 什么是unsafe呢?Java语言不像C,C++那样可以直接访问底层操作系统,但是JVM为我们提供了一个后门,这个后门就是unsafe。unsafe为我们提供了硬件级别的原子操作
  • 至于valueOffset对象,是通过unsafe.objectFieldOffset方法得到,所代表的是AtomicInteger对象value成员变量在内存中的偏移量。我们可以简单地把valueOffset理解为value变量的内存地址。


总结:关键在于unsafe提供硬件级别的原子操作。


CAS机制当中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。而unsafe的compareAndSwapInt方法参数包括了这三个基本元素:valueOffset参数代表了V,expect参数代表了A,update参数代表了B。正是unsafe的compareAndSwapInt方法保证了Compare和Swap操作之间的原子性操作。


CAS 的缺点及解决方式



CAS虽然很高效的解决原子操作,但是CAS仍然存在三大问题。ABA问题,循环时间长开销大和只能保证一个共享变量的原子操作


  • ABA问题:因为CAS需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A, 那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。
  • ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加一,那么A-B-A 就会变成1A-2B-3A
  • 从Java1.5开始JDK的atomic包里提供了一个类 AtomicStampedReference 来解决ABA问题。这个类的compareAndSet方法作用是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。
  • 循环时间长开销大:在并发量比较高的情况下,如果许多线程反复尝试更新某一个变量,即自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。
  • 如果JVM能支持处理器提供的pause指令,那么效率会有一定的提升。pause指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起CPU流水线被清空(CPU pipeline flush),从而提高CPU的执行效率。
  • 代码层面,破坏掉for死循环,当自旋超过一定时间或者一定次数时,return退出。
  • 使用类似ConcurrentHashMap的方法。当多个线程竞争时,将粒度变小,将一个变量拆分为多个变量,达到多个线程访问多个资源的效果,最后再调用sum把它合起来,能降低CPU消耗,但是治标不治本。
  • 只能保证一个共享变量的原子操作:当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性。
  • 这个时候就可以用锁,或者有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。
  • 从Java1.5开始JDK提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行CAS操作


synchronized 和 CAS 的区别



  • synchronized 采用的是 CPU 悲观锁机制,即线程获得的是独占锁。独占锁就意味着 其他线程只能依靠阻塞来等待线程释放锁。而在 CPU 转换线程阻塞时会引起线程上下文切换,当有很多线程竞争锁的时候,会引起 CPU 频繁的上下文切换导致效率很低。尽管 Java1.6 为 synchronized 做了优化,增加了从偏向锁到轻量级锁再到重量级锁的过度,但是在最终转变为重量级锁之后,性能仍然较低。
  • CAS 是英文单词 Compare And Swap 的缩写,翻译过来就是比较并替换。它当中使用了3个基本操作数:内存地址 V,旧的预期值 A,要修改的新值 B。采用的是一种乐观锁的机制,它不会阻塞任何线程,所以在效率上,它会比 synchronized 要高。所谓乐观锁就是:每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。


所以,在并发量非常高的情况下,我们尽量的用同步锁,而在其他情况下,我们可以灵活的采用 CAS 机制。

目录
打赏
0
0
0
0
7
分享
相关文章
|
13天前
|
重学Java基础篇—Java类加载顺序深度解析
本文全面解析Java类的生命周期与加载顺序,涵盖从加载到卸载的七个阶段,并深入探讨初始化阶段的执行规则。通过单类、继承体系的实例分析,明确静态与实例初始化的顺序。同时,列举六种触发初始化的场景及特殊场景处理(如接口初始化)。提供类加载完整流程图与记忆口诀,助于理解复杂初始化逻辑。此外,针对空指针异常等问题提出排查方案,并给出最佳实践建议,帮助开发者优化程序设计、定位BUG及理解框架机制。最后扩展讲解类加载器层次与双亲委派机制,为深入研究奠定基础。
35 0
【原理】【Java并发】【synchronized】适合中学者体质的synchronized原理
本文深入解析了Java中`synchronized`关键字的底层原理,从代码块与方法修饰的区别到锁升级机制,内容详尽。通过`monitorenter`和`monitorexit`指令,阐述了`synchronized`实现原子性、有序性和可见性的原理。同时,详细分析了锁升级流程:无锁 → 偏向锁 → 轻量级锁 → 重量级锁,结合对象头`MarkWord`的变化,揭示JVM优化锁性能的策略。此外,还探讨了Monitor的内部结构及线程竞争锁的过程,并介绍了锁消除与锁粗化等优化手段。最后,结合实际案例,帮助读者全面理解`synchronized`在并发编程中的作用与细节。
51 8
【原理】【Java并发】【synchronized】适合中学者体质的synchronized原理
|
21天前
|
【Java并发】【synchronized】适合初学者体质入门的synchronized
欢迎来到我的Java线程同步入门指南!我不是外包员工,梦想是写高端CRUD。2025年我正在沉淀中,博客更新速度加快,欢迎点赞、收藏、关注。 本文介绍Java中的`synchronized`关键字,适合初学者。`synchronized`用于确保多个线程访问共享资源时不会发生冲突,避免竞态条件、保证内存可见性、防止原子性破坏及协调多线程有序访问。
53 8
【Java并发】【synchronized】适合初学者体质入门的synchronized
重学Java基础篇—ThreadLocal深度解析与最佳实践
ThreadLocal 是一种实现线程隔离的机制,为每个线程创建独立变量副本,适用于数据库连接管理、用户会话信息存储等场景。
44 5
重学Java基础篇—类的生命周期深度解析
本文全面解析了Java类的生命周期,涵盖加载、验证、准备、解析、初始化、使用及卸载七个关键阶段。通过分阶段执行机制详解(如加载阶段的触发条件与技术实现),结合方法调用机制、内存回收保护等使用阶段特性,以及卸载条件和特殊场景处理,帮助开发者深入理解JVM运作原理。同时,文章探讨了性能优化建议、典型异常处理及新一代JVM特性(如元空间与模块化系统)。总结中强调安全优先、延迟加载与动态扩展的设计思想,并提供开发建议与进阶方向,助力解决性能调优、内存泄漏排查及框架设计等问题。
33 5
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
35 2
|
13天前
|
重学Java基础篇—Java Object类常用方法深度解析
Java中,Object类作为所有类的超类,提供了多个核心方法以支持对象的基本行为。其中,`toString()`用于对象的字符串表示,重写时应包含关键信息;`equals()`与`hashCode()`需成对重写,确保对象等价判断的一致性;`getClass()`用于运行时类型识别;`clone()`实现对象复制,需区分浅拷贝与深拷贝;`wait()/notify()`支持线程协作。此外,`finalize()`已过时,建议使用更安全的资源管理方式。合理运用这些方法,并遵循最佳实践,可提升代码质量与健壮性。
23 1
|
27天前
|
Java代码结构解析:类、方法、主函数(1分钟解剖室)
### Java代码结构简介 掌握Java代码结构如同拥有程序世界的建筑蓝图,类、方法和主函数构成“黄金三角”。类是独立的容器,承载成员变量和方法;方法实现特定功能,参数控制输入环境;主函数是程序入口。常见错误包括类名与文件名不匹配、忘记static修饰符和花括号未闭合。通过实战案例学习电商系统、游戏角色控制和物联网设备监控,理解类的作用、方法类型和主函数任务,避免典型错误,逐步提升编程能力。 **脑图速记法**:类如太空站,方法即舱段;main是发射台,static不能换;文件名对仗,括号要成双;参数是坐标,void不返航。
48 5
解锁Java并发编程高阶技能:深入剖析无锁CAS机制、揭秘魔法类Unsafe、精通原子包Atomic,打造高效并发应用
【8月更文挑战第4天】在Java并发编程中,无锁编程以高性能和低延迟应对高并发挑战。核心在于无锁CAS(Compare-And-Swap)机制,它基于硬件支持,确保原子性更新;Unsafe类提供底层内存操作,实现CAS;原子包java.util.concurrent.atomic封装了CAS操作,简化并发编程。通过`AtomicInteger`示例,展现了线程安全的自增操作,突显了这些技术在构建高效并发程序中的关键作用。
103 1
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####

热门文章

最新文章

推荐镜像

更多