【Redis 6】缓存穿透、缓存雪崩、缓存击穿(附解决方案、代码)(一)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 【Redis 6】缓存穿透、缓存雪崩、缓存击穿(附解决方案、代码)(一)

🍖 缓存穿透

🥩 原理以及解决方案

 缓存穿透是指客户端请求的数据在缓存和数据库中都不存在,这样请求就会先访问缓存再打到数据库。这原本是个正常现象并没有什么事情,但是如果有人借助这个漏洞一直请求缓存和数据库中都不存在的数据,那么就极有可能导致数据库崩溃。


 常见的解决方案有两种:第一种就是使用缓存空对象,也就是当请求发送过来缓存和数据库中都没有数据的时候,将该请求的结果为null并设置过期时间存入缓存中,然后返回401状态码,等到下一次请求时直接返回null即可。这样做的优点就是实现简单方便维护,但是造成额外内存损耗的缺点也很明显,过期时间就可以降低该缺点的影响


 第二种方案就是在缓存查询之前使用布隆过滤器,布隆过滤器就是由byte数组和一系列哈希函数两部分组成的数据结构,将数据使用hash函数计算出hash值,然后将这个hash值转成二进制位保存至布隆过滤器中,请求发送过来的话就计算出它的hash值,对应位置为1就说明存在0就是不存在。布隆过滤器的优点是不用频繁添加缓存内存占用小,但是缺点是实现相对复杂,而且会出现误判,布隆过滤器判断不存在的值一定不存在,它判断存在的值不一定就存在


🥩 缓存空对象代码实现

 缓存空对象和之前的查询相比无非就是两步,一是缓存和数据库中都查不到的话就往缓存中添加然后返回错误信息,二是缓存中查到数据进行非空判断,如果是""串的话就刷新TTL然后返回错误信息,下面的代码中的15~19行 22~26行中分别有体现


/**
 * 根据id查询商铺信息,涉及到redis的缓存
 * @param id  商铺id
 * @return 前端返回信息
 */
@Override
public Result queryById(Long id) {
    // 从redis查询商铺缓存
    String shopJson = stringRedisTemplate.opsForValue().get(RedisConstants.CACHE_SHOP_KEY + id);
    // 判断该商铺缓存中是否存在
    if (StrUtil.isNotBlank(shopJson)) {
        // 存在直接返回
        Shop shop = JSONUtil.toBean(shopJson, Shop.class);
        return Result.ok(shop);
    } else if ("".equals(shopJson)) {
        // 缓存中存在但是结果为""空字符串 也就是说之前使用 缓存空对象 方案时存入的,这样的话就刷新它的缓存时间返回异常
        stringRedisTemplate.expire(RedisConstants.CACHE_SHOP_KEY + id, RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);
        return Result.fail("店铺不存在");
    }
    // 不存在查询数据库
    Shop shop = getById(id);
    if (shop == null) {
        // 数据库中不存在 将null存入缓存设置过期时间2min并返回错误信息
        stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id, "", RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);
        return Result.fail("店铺不存在");
    }
    // 数据库中存在写入redis
    stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id, JSONUtil.toJsonStr(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);
    // 返回
    return Result.ok(shop);
}

image.png



🍖 缓存雪崩

🥩 原理以及解决方案

 缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,因此会给数据库带来巨大压力

 为了解决大量缓存数据同时失效,可以将数据的TTL设置为随机值,而不是使用一个固定值。为了解决Redis服务宕机,可以使用主从架构的集群提高服务的可用性,万一出现宕机可以使用从节点顶上。为了进一步防止缓存雪崩,我们还可以给缓存业务添加降级限流策略,也就是说当redis发生故障的时候可以直接拒绝服务而不是继续访问数据库;或者给业务添加多级缓存,在浏览器、nginx、redis、jvm、数据库等一层层的添加缓存


🍖 缓存击穿

🥩 原理以及解决方案

 缓存击穿也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,此时很多的请求会在瞬间给数据库带来巨大冲击。


 为了解决缓存击穿可以使用互斥锁,如果发生缓存击穿后,第一个请求查询数据库中该数据的时候,使用一个锁锁住,后续的所有请求在锁未放开之前访问这个数据就让它休眠一会重新查询缓存。这个方案优点就不说了,缺点就是在第一个线程写缓存期间,其他访问该数据的线程拿不到锁就只能处于等待状态,所以说这就很损耗性能


 还有一种方案就是逻辑过期,顾名思义逻辑过期就是不作真正的删除,而是使用一个字段存储过期时间代替TTL的过期删除,所有的线程在获取到数据的时候都去通过过期时间字段判断是否过期,过期的话就新建一个线程先更新数据库再删除缓存,自己就返回已过期的数据,在此期间所有的访问都会返回过期数据,等到新建线程的任务完成之后再次访问的线程就负责添加新的缓存数据并返回新的数据


🥩 互斥锁代码实现

 互斥锁方案解决缓存击穿相比较于缓存空对象解决缓存穿透的方案而言,最大的不同就是,在从缓存中查询到数据的情况下,需要先判断一下是否可以获得该数据对应的锁,可以就查询数据库并写入缓存,否则线程休眠重新调用该方法,上述代码需要放在try catch中使用finally释放锁,以上思路在21~40代码中实现


/**
 * 查询商铺信息 互斥锁解决缓存击穿
 * @param id  商铺编号
 * @return 查询到的商铺信息
 */
public Shop queryWithMutex(Long id) {
    // 从redis查询商铺缓存
    String shopJson = stringRedisTemplate.opsForValue().get(RedisConstants.CACHE_SHOP_KEY + id);
    // 判断该商铺缓存中是否存在
    if (StrUtil.isNotBlank(shopJson)) {
        // 存在直接返回
        Shop shop = JSONUtil.toBean(shopJson, Shop.class);
        return shop;
    } else if ("".equals(shopJson)) {
        // 缓存中存在但是结果为""空字符串 也就是说之前使用 缓存空对象 方案时存入的,这样的话就刷新它的缓存时间返回异常
        stringRedisTemplate.expire(RedisConstants.CACHE_SHOP_KEY + id, RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);
        return null;
    }
    // 不存在先查看是否可以获取到锁,如果可以就休眠重试,否则就查询数据库写缓存
    Shop shop = null;
    try {
        if (!tryLock(RedisConstants.LOCK_SHOP_KEY + id)) {
            // 获取锁失败
            Thread.sleep(50);
            queryWithMutex(id);
        }
        shop = getById(id);
        if (shop == null) {
            // 数据库中不存在 将null存入缓存设置过期时间2min并返回错误信息
            stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id, "", RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);
            return null;
        }
        // 数据库中存在写入redis
        stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id, JSONUtil.toJsonStr(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);
    } catch (InterruptedException e) {
        throw new RuntimeException(e);
    } finally {
        // 释放互斥锁
        unLock(RedisConstants.LOCK_SHOP_KEY + id);
    }
    // 返回
    return shop;
}

🥩 逻辑过期代码实现

 逻辑过期的前提条件是先向缓存中存入一个带有过期时间字段的商铺信息,也就是模拟现将需要做活动的商品信息存入到redis缓存中,然后再对缓存进行查询,如果缓存中不存在就返回null,存在的话就进行逻辑过期的操作


// 创建线程池 用于更新缓存时间过期的时候 更新缓存使用
private static final ExecutorService CACH_REBUILD_EXECUTOR = Executors.newFixedThreadPool(5);
/**
 * 查询商铺信息 逻辑过期解决缓存击穿
 * @param id  商铺编号
 * @return 查询到的商铺信息
 */
public Shop queryWithLogicalExpire(Long id) {
    // 从redis查询商铺缓存
    String shopJson = stringRedisTemplate.opsForValue().get(RedisConstants.CACHE_SHOP_KEY + id);
    // 判断该商铺缓存中是否存在
    if (StrUtil.isBlank(shopJson)) {
        // 不存在直接返回null
        return null;
    }
    // 存在 反序列化获取 店铺信息 和 expire字段
    RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);
    Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
    LocalDateTime expireTime = redisData.getExpireTime();
    // 判断是否过期 过期时间在当前时间之后即为未过期
    if (expireTime.isAfter(LocalDateTime.now())) {
        // 未过期直接返回店铺信息
        return shop;
    }
    // 已过期 尝试获取锁
    if (tryLock(RedisConstants.LOCK_SHOP_KEY + id)) {
        // 获取锁成功 开启独立线程去做缓存重建
        CACH_REBUILD_EXECUTOR.submit(() -> {
            // 创建缓存
            try {
                saveShopWithExpireTimeToRedis(id, 20L);
            } catch (Exception e) {
                throw new RuntimeException(e);
            } finally {
                // 释放锁
                unLock(RedisConstants.LOCK_SHOP_KEY + id);
            }
        });
    }
    // 返回
    return shop;
}


相关文章
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
4月前
|
缓存 数据库连接 数据库
缓存三剑客(穿透、击穿、雪崩)
缓存穿透指查询数据库和缓存中都不存在的数据,导致请求直接冲击数据库。解决方案包括缓存空对象和布隆过滤器。缓存击穿是大量请求访问同一个失效的热点数据,使数据库瞬间压力剧增,解决方法有提前预热、设置永不过期、加锁限流等。缓存雪崩是大量key同时失效,导致所有请求直达数据库,可通过引入随机过期时间缓解。三者分别对应单点爆破、全面崩塌等问题,需根据场景选择合适策略优化系统性能与稳定性。
326 0
|
4月前
|
存储 缓存 NoSQL
如何解决缓存击穿?
缓存击穿是指热点数据失效时大量请求直接冲击数据库,可能导致系统崩溃。解决方案包括:永不过期策略避免缓存失效瞬间的穿透;互斥锁控制并发访问;热点预热提前刷新缓存;熔断降级在数据库压力大时返回默认值;二级缓存降低Redis压力。实际中常组合使用多种方案,如热点预热+互斥锁+熔断降级,以提升系统稳定性与性能。
585 0
|
1月前
|
缓存 负载均衡 监控
135_负载均衡:Redis缓存 - 提高缓存命中率的配置与最佳实践
在现代大型语言模型(LLM)部署架构中,缓存系统扮演着至关重要的角色。随着LLM应用规模的不断扩大和用户需求的持续增长,如何构建高效、可靠的缓存架构成为系统性能优化的核心挑战。Redis作为业界领先的内存数据库,因其高性能、丰富的数据结构和灵活的配置选项,已成为LLM部署中首选的缓存解决方案。
|
2月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
191 1
Redis专题-实战篇二-商户查询缓存
|
1月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。
|
6月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
961 0
|
2月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
3月前
|
缓存 监控 安全
告别缓存击穿!Go 语言中的防并发神器:singleflight 包深度解析
在高并发场景中,多个请求同时访问同一资源易导致缓存击穿、数据库压力过大。Go 语言提供的 `singleflight` 包可将相同 key 的请求合并,仅执行一次实际操作,其余请求共享结果,有效降低系统负载。本文详解其原理、实现及典型应用场景,并附示例代码,助你掌握高并发优化技巧。
302 0
|
6月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
240 32