SpringCloud微服务实战——搭建企业级开发框架(三十八):搭建ELK日志采集与分析系统

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 一套好的日志分析系统可以详细记录系统的运行情况,方便我们定位分析系统性能瓶颈、查找定位系统问题。上一篇说明了日志的多种业务场景以及日志记录的实现方式,那么日志记录下来,相关人员就需要对日志数据进行处理与分析,基于E(ElasticSearch)L(Logstash)K(Kibana)组合的日志分析系统可以说是目前各家公司普遍的首选方案。• Elasticsearch: 分布式、RESTful 风格的搜索和数据分析引擎,可快速存储、搜索、分析海量的数据。在ELK中用于存储所有日志数据。

一套好的日志分析系统可以详细记录系统的运行情况,方便我们定位分析系统性能瓶颈、查找定位系统问题。上一篇说明了日志的多种业务场景以及日志记录的实现方式,那么日志记录下来,相关人员就需要对日志数据进行处理与分析,基于E(ElasticSearch)L(Logstash)K(Kibana)组合的日志分析系统可以说是目前各家公司普遍的首选方案。


  • Elasticsearch:  分布式、RESTful 风格的搜索和数据分析引擎,可快速存储、搜索、分析海量的数据。在ELK中用于存储所有日志数据。


  • Logstash: 开源的数据采集引擎,具有实时管道传输功能。Logstash 能够将来自单独数据源的数据动态集中到一起,对这些数据加以标准化并传输到您所选的地方。在ELK中用于将采集到的日志数据进行处理、转换然后存储到Elasticsearch。


  • Kibana: 免费且开放的用户界面,能够让您对 Elasticsearch 数据进行可视化,并让您在 Elastic Stack 中进行导航。您可以进行各种操作,从跟踪查询负载,到理解请求如何流经您的整个应用,都能轻松完成。在ELK中用于通过界面展示存储在Elasticsearch中的日志数据。


  作为微服务集群,必须要考虑当微服务访问量暴增时的高并发场景,此时系统的日志数据同样是爆发式增长,我们需要通过消息队列做流量削峰处理,Logstash官方提供Redis、Kafka、RabbitMQ等输入插件。Redis虽然可以用作消息队列,但其各项功能显示不如单一实现的消息队列,所以通常情况下并不使用它的消息队列功能;Kafka的性能要优于RabbitMQ,通常在日志采集,数据采集时使用较多,所以这里我们采用Kafka实现消息队列功能。


  ELK日志分析系统中,数据传输、数据保存、数据展示、流量削峰功能都有了,还少一个组件,就是日志数据的采集,虽然log4j2可以将日志数据发送到Kafka,甚至可以将日志直接输入到Logstash,但是基于系统设计解耦的考虑,业务系统运行不会影响到日志分析系统,同时日志分析系统也不会影响到业务系统,所以,业务只需将日志记录下来,然后由日志分析系统去采集分析即可,Filebeat是ELK日志系统中常用的日志采集器,它是 Elastic Stack 的一部分,因此能够与 Logstash、Elasticsearch 和 Kibana 无缝协作。


  • Kafka: 高吞吐量的分布式发布订阅消息队列,主要应用于大数据的实时处理。


  • Filebeat:  轻量型日志采集器。在 Kubernetes、Docker 或云端部署中部署 Filebeat,即可获得所有的日志流:信息十分完整,包括日志流的 pod、容器、节点、VM、主机以及自动关联时用到的其他元数据。此外,Beats Autodiscover 功能可检测到新容器,并使用恰当的 Filebeat 模块对这些容器进行自适应监测。


软件下载:


  因经常遇到在内网搭建环境的问题,所以这里习惯使用下载软件包的方式进行安装,虽没有使用Yum、Docker等安装方便,但是可以对软件目录、配置信息等有更深的了解,在后续采用Yum、Docker等方式安装时,也能清楚安装了哪些东西,安装配置的文件是怎样的,即使出现问题,也可以快速的定位解决。


Elastic Stack全家桶下载主页: https://www.elastic.co/cn/downloads/


我们选择如下版本:






Kafka下载:


安装配置:


  安装前先准备好三台CentOS7服务器用于集群安装,这是IP地址为:172.16.20.220、172.16.20.221、172.16.20.222,然后将上面下载的软件包上传至三台服务器的/usr/local目录。因服务器资源有限,这里所有的软件都安装在这三台集群服务器上,在实际生产环境中,请根据业务需求设计规划进行安装。

  在集群搭建时,如果能够编写shell安装脚本就会很方便,如果不能编写,就需要在每台服务器上执行安装命令,多数ssh客户端提供了多会话同时输入的功能,这里一些通用安装命令可以选择启用该功能。


一、安装Elasticsearch集群


1、Elasticsearch是使用Java语言开发的,所以需要在环境上安装jdk并配置环境变量。



新建/usr/local/java目录


mkdir /usr/local/java


将下载的jdk软件包jdk-8u64-linux-x64.tar.gz上传到/usr/local/java目录,然后解压


tar -zxvf jdk-8u77-linux-x64.tar.gz


配置环境变量/etc/profile


vi /etc/profile


在底部添加以下内容


JAVA_HOME=/usr/local/java/jdk1.8.0_64
PATH=$JAVA_HOME/bin:$PATH
CLASSPATH=$JAVA_HOME/jre/lib/ext:$JAVA_HOME/lib/tools.jar
export PATH JAVA_HOME CLASSPATH


使环境变量生效


source /etc/profile


  • 另外一种十分快捷的方式,如果不是内网环境,可以直接使用命令行安装,这里安装的是免费版本的openjdk


yum install java-1.8.0-openjdk* -y


2、安装配置Elasticsearch


  • 进入/usr/local目录,解压Elasticsearch安装包,请确保执行命令前已将环境准备时的Elasticsearch安装包上传至该目录。


tar -zxvf elasticsearch-8.0.0-linux-x86_64.tar.gz


  • 重命名文件夹


mv elasticsearch-8.0.0 elasticsearch


  • elasticsearch不能使用root用户运行,这里创建运行elasticsearch的用户组和用户


# 创建用户组
groupadd elasticsearch
# 创建用户并添加至用户组
useradd elasticsearch -g elasticsearch
# 更改elasticsearch密码,设置一个自己需要的密码,这里设置为和用户名一样:El12345678
passwd elasticsearch


  • 新建elasticsearch数据和日志存放目录,并给elasticsearch用户赋权限


mkdir -p /data/elasticsearch/data
mkdir -p /data/elasticsearch/log
chown -R elasticsearch:elasticsearch /data/elasticsearch/*
chown -R elasticsearch:elasticsearch /usr/local/elasticsearch/*


  • elasticsearch默认启用了x-pack,集群通信需要进行安全认证,所以这里需要用到SSL证书。注意:这里生成证书的命令只在一台服务器上执行,执行之后copy到另外两台服务器的相同目录下。


# 提示输入密码时,直接回车
./elasticsearch-certutil ca -out /usr/local/elasticsearch/config/elastic-stack-ca.p12
# 提示输入密码时,直接回车
./elasticsearch-certutil cert --ca /usr/local/elasticsearch/config/elastic-stack-ca.p12 -out /usr/local/elasticsearch/config/elastic-certificates.p12 -pass ""
# 如果使用root用户生成的证书,记得给elasticsearch用户赋权限
chown -R elasticsearch:elasticsearch /usr/local/elasticsearch/config/elastic-certificates.p12


  • 设置密码,这里在出现输入密码时,所有的都是输入的123456


./elasticsearch-setup-passwords interactive
Enter password for [elastic]: 
Reenter password for [elastic]: 
Enter password for [apm_system]: 
Reenter password for [apm_system]: 
Enter password for [kibana_system]: 
Reenter password for [kibana_system]: 
Enter password for [logstash_system]: 
Reenter password for [logstash_system]: 
Enter password for [beats_system]: 
Reenter password for [beats_system]: 
Enter password for [remote_monitoring_user]: 
Reenter password for [remote_monitoring_user]: 
Changed password for user [apm_system]
Changed password for user [kibana_system]
Changed password for user [kibana]
Changed password for user [logstash_system]
Changed password for user [beats_system]
Changed password for user [remote_monitoring_user]
Changed password for user [elastic]


  • 修改elasticsearch配置文件


vi /usr/local/elasticsearch/config/elasticsearch.yml


# 修改配置
# 集群名称
cluster.name: log-elasticsearch
# 节点名称
node.name: node-1
# 数据存放路径
path.data: /data/elasticsearch/data
 # 日志存放路径
path.logs: /data/elasticsearch/log
# 当前节点IP
network.host: 192.168.60.201
 # 对外端口
http.port: 9200
# 集群ip
discovery.seed_hosts: ["172.16.20.220", "172.16.20.221", "172.16.20.222"]
# 初始主节点
cluster.initial_master_nodes: ["node-1", "node-2", "node-3"]
# 新增配置
# 集群端口
transport.tcp.port: 9300
transport.tcp.compress: true
http.cors.enabled: true
http.cors.allow-origin: "*" 
http.cors.allow-methods: OPTIONS, HEAD, GET, POST, PUT, DELETE
http.cors.allow-headers: "X-Requested-With, Content-Type, Content-Length, X-User"
xpack.security.enabled: true
xpack.security.transport.ssl.enabled: true
xpack.security.transport.ssl.verification_mode: certificate
xpack.security.transport.ssl.keystore.path: elastic-certificates.p12
xpack.security.transport.ssl.truststore.path: elastic-certificates.p12


  • 配置Elasticsearch的JVM参数


vi /usr/local/elasticsearch/config/jvm.options


-Xms1g
-Xmx1g


  • 修改Linux默认资源限制数


vi /etc/security/limits.conf


# 在最后加入,修改完成后,重启系统生效。
*                soft    nofile          131072
*                hard   nofile          131072


vi /etc/sysctl.conf
# 将值vm.max_map_count值修改为655360
vm.max_map_count=655360
# 使配置生效
sysctl -p


  • 切换用户启动服务


su elasticsearch
cd /usr/local/elasticsearch/bin
# 控制台启动命令,可以看到具体报错信息
./elasticsearch



elasticsearch服务已启动


  • 正常运行没有问题后,Ctrl+c关闭服务,然后使用后台启动命令


./elasticsearch -d


备注:后续可通过此命令停止elasticsearch运行


# 查看进程id
ps -ef | grep elastic
# 关闭进程
kill -9 1376(进程id)


3、安装ElasticSearch界面管理插件elasticsearch-head,只需要在一台服务器上安装即可,这里我们安装到172.16.20.220服务器上


  • 配置nodejs环境


下载地址: (https://nodejs.org/dist/v16.14.0/node-v16.14.0-linux-x64.tar.xz)[https://nodejs.org/dist/v16.14.0/node-v16.14.0-linux-x64.tar.xz],将node-v16.14.0-linux-x64.tar.xz上传到服务器172.16.20.220的/usr/local目录


# 解压
tar -xvJf node-v16.14.0-linux-x64.tar.xz
# 重命名
mv node-v16.14.0-linux-x64 nodejs
# 配置环境变量
vi /etc/profile
# 新增以下内容
export NODE_HOME=/usr/local/nodejs
PATH=$JAVA_HOME/bin:$NODE_HOME/bin:/usr/local/mysql/bin:/usr/local/subversion/bin:$PATH
export PATH JAVA_HOME NODE_HOME JENKINS_HOME CLASSPATH
# 使配置生效
source /etc/profile
# 测试是否配置成功
node -v



# 解压
unzip elasticsearch-head-master.zip
# 重命名
mv elasticsearch-head-master elasticsearch-head
# 进入到elasticsearch-head目录
cd elasticsearch-head
#切换软件源,可以提升安装速度
npm config set registry https://registry.npm.taobao.org
# 执行安装命令
npm install -g npm@8.5.1
npm install phantomjs-prebuilt@2.1.16 --ignore-scripts
npm install
# 启动命令
npm run start


微信图片_20220519224857.png


elasticsearch集群状态


二、安装Kafka集群


  • 环境准备:


  新建kafka的日志目录和zookeeper数据目录,因为这两项默认放在tmp目录,而tmp目录中内容会随重启而丢失,所以我们自定义以下目录:


mkdir /data/zookeeper
 mkdir /data/zookeeper/data
 mkdir /data/zookeeper/logs
 mkdir /data/kafka
 mkdir /data/kafka/data
 mkdir /data/kafka/logs


  • zookeeper.properties配置


vi /usr/local/kafka/config/zookeeper.properties


修改如下:


# 修改为自定义的zookeeper数据目录
dataDir=/data/zookeeper/data
# 修改为自定义的zookeeper日志目录
dataLogDir=/data/zookeeper/logs
# 端口
clientPort=2181
# 注释掉
#maxClientCnxns=0
# 设置连接参数,添加如下配置
# 为zk的基本时间单元,毫秒
tickTime=2000
# Leader-Follower初始通信时限 tickTime*10
initLimit=10
# Leader-Follower同步通信时限 tickTime*5
syncLimit=5
# 设置broker Id的服务地址,本机ip一定要用0.0.0.0代替
server.1=0.0.0.0:2888:3888
server.2=172.16.20.221:2888:3888
server.3=172.16.20.222:2888:3888


  • 在各台服务器的zookeeper数据目录/data/zookeeper/data添加myid文件,写入服务broker.id属性值


在data文件夹中新建myid文件,myid文件的内容为1(一句话创建:echo 1 > myid)


cd /data/zookeeper/data
vi myid
#添加内容:1 其他两台主机分别配置 2和3
1


  • kafka配置,进入config目录下,修改server.properties文件


vi /usr/local/kafka/config/server.properties


# 每台服务器的broker.id都不能相同
broker.id=1
# 是否可以删除topic
delete.topic.enable=true
# topic 在当前broker上的分片个数,与broker保持一致
num.partitions=3
# 每个主机地址不一样:
listeners=PLAINTEXT://172.16.20.220:9092
advertised.listeners=PLAINTEXT://172.16.20.220:9092
# 具体一些参数
log.dirs=/data/kafka/kafka-logs
# 设置zookeeper集群地址与端口如下:
zookeeper.connect=172.16.20.220:2181,172.16.20.221:2181,172.16.20.222:2181


  • Kafka启动


kafka启动时先启动zookeeper,再启动kafka;关闭时相反,先关闭kafka,再关闭zookeeper。


1、zookeeper启动命令


./zookeeper-server-start.sh ../config/zookeeper.properties &


后台运行启动命令:


nohup ./zookeeper-server-start.sh ../config/zookeeper.properties >/data/zookeeper/logs/zookeeper.log 2>1 &


或者


./zookeeper-server-start.sh -daemon ../config/zookeeper.properties &


查看集群状态:


./zookeeper-server-start.sh status ../config/zookeeper.properties


2、kafka启动命令


./kafka-server-start.sh ../config/server.properties &


后台运行启动命令:


nohup bin/kafka-server-start.sh ../config/server.properties >/data/kafka/logs/kafka.log 2>1 &


或者


./kafka-server-start.sh -daemon ../config/server.properties &


3、创建topic,最新版本已经不需要使用zookeeper参数创建。


./kafka-topics.sh --create --replication-factor 2 --partitions 1 --topic test --bootstrap-server 172.16.20.220:9092


参数解释:


复制两份


  --replication-factor 2


创建1个分区


  --partitions 1


topic 名称


  --topic test


4、查看已经存在的topic(三台设备都执行时可以看到)


./kafka-topics.sh --list --bootstrap-server 172.16.20.220:9092


5、启动生产者:


./kafka-console-producer.sh --broker-list 172.16.20.220:9092 --topictest


6、启动消费者:


./kafka-console-consumer.sh --bootstrap-server 172.16.20.221:9092 --topic test
./kafka-console-consumer.sh --bootstrap-server 172.16.20.222:9092 --topic test


添加参数 --from-beginning 从开始位置消费,不是从最新消息


./kafka-console-consumer.sh --bootstrap-server 172.16.20.221 --topic test --from-beginning


7、测试:在生产者输入test,可以在消费者的两台服务器上看到同样的字符test,说明Kafka服务器集群已搭建成功。


三、安装配置Logstash


Logstash没有提供集群安装方式,相互之间并没有交互,但是我们可以配置同属一个Kafka消费者组,来实现统一消息只消费一次的功能。


  • 解压安装包


tar -zxvf logstash-8.0.0-linux-x86_64.tar.gz
mv logstash-8.0.0 logstash


  • 配置kafka主题和组


cd logstash
# 新建配置文件
vi logstash-kafka.conf
# 新增以下内容
input {
  kafka {
    codec => "json"
    group_id => "logstash"
    client_id => "logstash-api"
    topics_pattern => "api_log"
    type => "api"
    bootstrap_servers => "172.16.20.220:9092,172.16.20.221:9092,172.16.20.222:9092"
    auto_offset_reset => "latest"
  }
  kafka {
    codec => "json"
    group_id => "logstash"
    client_id => "logstash-operation"
    topics_pattern => "operation_log"
    type => "operation"
    bootstrap_servers => "172.16.20.220:9092,172.16.20.221:9092,172.16.20.222:9092"
    auto_offset_reset => "latest"
  }
  kafka {
    codec => "json"
    group_id => "logstash"
    client_id => "logstash-debugger"
    topics_pattern => "debugger_log"
    type => "debugger"
    bootstrap_servers => "172.16.20.220:9092,172.16.20.221:9092,172.16.20.222:9092"
    auto_offset_reset => "latest"
  }
  kafka {
    codec => "json"
    group_id => "logstash"
    client_id => "logstash-nginx"
    topics_pattern => "nginx_log"
    type => "nginx"
    bootstrap_servers => "172.16.20.220:9092,172.16.20.221:9092,172.16.20.222:9092"
    auto_offset_reset => "latest"
  }
}
output {
 if [type] == "api"{
  elasticsearch {
    hosts => ["172.16.20.220:9200","172.16.20.221:9200","172.16.20.222:9200"]
    index => "logstash_api-%{+YYYY.MM.dd}"
    user => "elastic"
    password => "123456"
  }
 }
 if [type] == "operation"{
  elasticsearch {
    hosts => ["172.16.20.220:9200","172.16.20.221:9200","172.16.20.222:9200"]
    index => "logstash_operation-%{+YYYY.MM.dd}"
    user => "elastic"
    password => "123456"
  }
 }
 if [type] == "debugger"{
  elasticsearch {
    hosts => ["172.16.20.220:9200","172.16.20.221:9200","172.16.20.222:9200"]
    index => "logstash_operation-%{+YYYY.MM.dd}"
    user => "elastic"
    password => "123456"
  }
 }
 if [type] == "nginx"{
  elasticsearch {
    hosts => ["172.16.20.220:9200","172.16.20.221:9200","172.16.20.222:9200"]
    index => "logstash_operation-%{+YYYY.MM.dd}"
    user => "elastic"
    password => "123456"
  }
 }
}


  • 启动logstash


# 切换到bin目录
cd /usr/local/logstash/bin
# 启动命令
nohup ./logstash -f ../config/logstash-kafka.conf &
#查看启动日志
tail -f nohup.out


四、安装配置Kibana


  • 解压安装文件


tar -zxvf kibana-8.0.0-linux-x86_64.tar.gz
mv kibana-8.0.0 kibana


  • 修改配置文件


cd /usr/local/kibana/config
vi kibana.yml
# 修改以下内容
server.port: 5601
server.host: "172.16.20.220"
elasticsearch.hosts: ["http://172.16.20.220:9200","http://172.16.20.221:9200","http://172.16.20.222:9200"]
elasticsearch.username: "kibana_system"
elasticsearch.password: "123456"


  • 启动服务


cd /usr/local/kibana/bin
# 默认不允许使用root运行,可以添加 --allow-root 参数使用root用户运行,也可以跟Elasticsearch一样新增一个用户组用户
nohup ./kibana --allow-root &



首页


五、安装Filebeat


  Filebeat用于安装在业务软件运行服务器,收集业务产生的日志,并推送到我们配置的Kafka、Redis、RabbitMQ等消息中间件,或者直接保存到Elasticsearch,下面来讲解如何安装配置:


1、进入到/usr/local目录,执行解压命令


tar -zxvf filebeat-8.0.0-linux-x86_64.tar.gz
mv filebeat-8.0.0-linux-x86_64 filebeat


2、编辑配置filebeat.yml


  配置文件中默认是输出到elasticsearch,这里我们改为kafka,同文件目录下的filebeat.reference.yml文件是所有配置的实例,可以直接将kafka的配置复制到filebeat.yml


  • 配置采集开关和采集路径:


# filestream is an input for collecting log messages from files.
- type: filestream
  # Change to true to enable this input configuration.
  # enable改为true
  enabled: true
  # Paths that should be crawled and fetched. Glob based paths.
  # 修改微服务日志的实际路径
  paths:
    - /data/gitegg/log/gitegg-service-system/*.log
    - /data/gitegg/log/gitegg-service-base/*.log
    - /data/gitegg/log/gitegg-service-oauth/*.log
    - /data/gitegg/log/gitegg-service-gateway/*.log
    - /data/gitegg/log/gitegg-service-extension/*.log
    - /data/gitegg/log/gitegg-service-bigdata/*.log
    #- c:\programdata\elasticsearch\logs\*
  # Exclude lines. A list of regular expressions to match. It drops the lines that are
  # matching any regular expression from the list.
  #exclude_lines: ['^DBG']
  # Include lines. A list of regular expressions to match. It exports the lines that are
  # matching any regular expression from the list.
  #include_lines: ['^ERR', '^WARN']
  # Exclude files. A list of regular expressions to match. Filebeat drops the files that
  # are matching any regular expression from the list. By default, no files are dropped.
  #prospector.scanner.exclude_files: ['.gz$']
  # Optional additional fields. These fields can be freely picked
  # to add additional information to the crawled log files for filtering
  #fields:
  #  level: debug
  #  review: 1


  • Elasticsearch 模板配置


# ======================= Elasticsearch template setting =======================
setup.template.settings:
  index.number_of_shards: 3
  index.number_of_replicas: 1
  #index.codec: best_compression
  #_source.enabled: false
# 允许自动生成index模板
setup.template.enabled: true
# # 生成index模板时字段配置文件
setup.template.fields: fields.yml
# # 如果存在模块则覆盖
setup.template.overwrite: true
# # 生成index模板的名称
setup.template.name: "api_log" 
# # 生成index模板匹配的index格式 
setup.template.pattern: "api-*" 
#索引生命周期管理ilm功能默认开启,开启的情况下索引名称只能为filebeat-*, 通过setup.ilm.enabled: false进行关闭;
setup.ilm.pattern: "{now/d}"
setup.ilm.enabled: false


  • 开启仪表盘并配置使用Kibana仪表盘:


# ================================= Dashboards =================================
# These settings control loading the sample dashboards to the Kibana index. Loading
# the dashboards is disabled by default and can be enabled either by setting the
# options here or by using the `setup` command.
setup.dashboards.enabled: true
# The URL from where to download the dashboards archive. By default this URL
# has a value which is computed based on the Beat name and version. For released
# versions, this URL points to the dashboard archive on the artifacts.elastic.co
# website.
#setup.dashboards.url:
# =================================== Kibana ===================================
# Starting with Beats version 6.0.0, the dashboards are loaded via the Kibana API.
# This requires a Kibana endpoint configuration.
setup.kibana:
  # Kibana Host
  # Scheme and port can be left out and will be set to the default (http and 5601)
  # In case you specify and additional path, the scheme is required: http://localhost:5601/path
  # IPv6 addresses should always be defined as: https://[2001:db8::1]:5601
  host: "172.16.20.220:5601"
  # Kibana Space ID
  # ID of the Kibana Space into which the dashboards should be loaded. By default,
  # the Default Space will be used.
  #space.id:


  • 配置输出到Kafka,完整的filebeat.yml如下


###################### Filebeat Configuration Example #########################
# This file is an example configuration file highlighting only the most common
# options. The filebeat.reference.yml file from the same directory contains all the
# supported options with more comments. You can use it as a reference.
#
# You can find the full configuration reference here:
# https://www.elastic.co/guide/en/beats/filebeat/index.html
# For more available modules and options, please see the filebeat.reference.yml sample
# configuration file.
# ============================== Filebeat inputs ===============================
filebeat.inputs:
# Each - is an input. Most options can be set at the input level, so
# you can use different inputs for various configurations.
# Below are the input specific configurations.
# filestream is an input for collecting log messages from files.
- type: filestream
  # Change to true to enable this input configuration.
  enabled: true
  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - /data/gitegg/log/*/*operation.log
    #- c:\programdata\elasticsearch\logs\*
  # Exclude lines. A list of regular expressions to match. It drops the lines that are
  # matching any regular expression from the list.
  #exclude_lines: ['^DBG']
  # Include lines. A list of regular expressions to match. It exports the lines that are
  # matching any regular expression from the list.
  #include_lines: ['^ERR', '^WARN']
  # Exclude files. A list of regular expressions to match. Filebeat drops the files that
  # are matching any regular expression from the list. By default, no files are dropped.
  #prospector.scanner.exclude_files: ['.gz$']
  # Optional additional fields. These fields can be freely picked
  # to add additional information to the crawled log files for filtering
  fields:
    topic: operation_log
  #  level: debug
  #  review: 1
# filestream is an input for collecting log messages from files.
- type: filestream
  # Change to true to enable this input configuration.
  enabled: true
  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - /data/gitegg/log/*/*api.log
    #- c:\programdata\elasticsearch\logs\*
  # Exclude lines. A list of regular expressions to match. It drops the lines that are
  # matching any regular expression from the list.
  #exclude_lines: ['^DBG']
  # Include lines. A list of regular expressions to match. It exports the lines that are
  # matching any regular expression from the list.
  #include_lines: ['^ERR', '^WARN']
  # Exclude files. A list of regular expressions to match. Filebeat drops the files that
  # are matching any regular expression from the list. By default, no files are dropped.
  #prospector.scanner.exclude_files: ['.gz$']
  # Optional additional fields. These fields can be freely picked
  # to add additional information to the crawled log files for filtering
  fields:
    topic: api_log
  #  level: debug
  #  review: 1
# filestream is an input for collecting log messages from files.
- type: filestream
  # Change to true to enable this input configuration.
  enabled: true
  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - /data/gitegg/log/*/*debug.log
    #- c:\programdata\elasticsearch\logs\*
  # Exclude lines. A list of regular expressions to match. It drops the lines that are
  # matching any regular expression from the list.
  #exclude_lines: ['^DBG']
  # Include lines. A list of regular expressions to match. It exports the lines that are
  # matching any regular expression from the list.
  #include_lines: ['^ERR', '^WARN']
  # Exclude files. A list of regular expressions to match. Filebeat drops the files that
  # are matching any regular expression from the list. By default, no files are dropped.
  #prospector.scanner.exclude_files: ['.gz$']
  # Optional additional fields. These fields can be freely picked
  # to add additional information to the crawled log files for filtering
  fields:
    topic: debugger_log
  #  level: debug
  #  review: 1
# filestream is an input for collecting log messages from files.
- type: filestream
  # Change to true to enable this input configuration.
  enabled: true
  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - /usr/local/nginx/logs/access.log
    #- c:\programdata\elasticsearch\logs\*
  # Exclude lines. A list of regular expressions to match. It drops the lines that are
  # matching any regular expression from the list.
  #exclude_lines: ['^DBG']
  # Include lines. A list of regular expressions to match. It exports the lines that are
  # matching any regular expression from the list.
  #include_lines: ['^ERR', '^WARN']
  # Exclude files. A list of regular expressions to match. Filebeat drops the files that
  # are matching any regular expression from the list. By default, no files are dropped.
  #prospector.scanner.exclude_files: ['.gz$']
  # Optional additional fields. These fields can be freely picked
  # to add additional information to the crawled log files for filtering
  fields:
    topic: nginx_log
  #  level: debug
  #  review: 1
# ============================== Filebeat modules ==============================
filebeat.config.modules:
  # Glob pattern for configuration loading
  path: ${path.config}/modules.d/*.yml
  # Set to true to enable config reloading
  reload.enabled: false
  # Period on which files under path should be checked for changes
  #reload.period: 10s
# ======================= Elasticsearch template setting =======================
setup.template.settings:
  index.number_of_shards: 3
  index.number_of_replicas: 1
  #index.codec: best_compression
  #_source.enabled: false
# 允许自动生成index模板
setup.template.enabled: true
# # 生成index模板时字段配置文件
setup.template.fields: fields.yml
# # 如果存在模块则覆盖
setup.template.overwrite: true
# # 生成index模板的名称
setup.template.name: "gitegg_log" 
# # 生成index模板匹配的index格式 
setup.template.pattern: "filebeat-*" 
#索引生命周期管理ilm功能默认开启,开启的情况下索引名称只能为filebeat-*, 通过setup.ilm.enabled: false进行关闭;
setup.ilm.pattern: "{now/d}"
setup.ilm.enabled: false
# ================================== General ===================================
# The name of the shipper that publishes the network data. It can be used to group
# all the transactions sent by a single shipper in the web interface.
#name:
# The tags of the shipper are included in their own field with each
# transaction published.
#tags: ["service-X", "web-tier"]
# Optional fields that you can specify to add additional information to the
# output.
#fields:
#  env: staging 
# ================================= Dashboards =================================
# These settings control loading the sample dashboards to the Kibana index. Loading
# the dashboards is disabled by default and can be enabled either by setting the
# options here or by using the `setup` command.
setup.dashboards.enabled: true
# The URL from where to download the dashboards archive. By default this URL
# has a value which is computed based on the Beat name and version. For released
# versions, this URL points to the dashboard archive on the artifacts.elastic.co
# website.
#setup.dashboards.url:
# =================================== Kibana ===================================
# Starting with Beats version 6.0.0, the dashboards are loaded via the Kibana API.
# This requires a Kibana endpoint configuration.
setup.kibana:
  # Kibana Host
  # Scheme and port can be left out and will be set to the default (http and 5601)
  # In case you specify and additional path, the scheme is required: http://localhost:5601/path
  # IPv6 addresses should always be defined as: https://[2001:db8::1]:5601
  host: "172.16.20.220:5601"
  # Optional protocol and basic auth credentials.
  #protocol: "https"
  username: "elastic"
  password: "123456"
  # Optional HTTP path
  #path: ""
  # Optional Kibana space ID.
  #space.id: ""
  # Custom HTTP headers to add to each request
  #headers:
  #  X-My-Header: Contents of the header
  # Use SSL settings for HTTPS.
  #ssl.enabled: true
# =============================== Elastic Cloud ================================
# These settings simplify using Filebeat with the Elastic Cloud (https://cloud.elastic.co/).
# The cloud.id setting overwrites the `output.elasticsearch.hosts` and
# `setup.kibana.host` options.
# You can find the `cloud.id` in the Elastic Cloud web UI.
#cloud.id:
# The cloud.auth setting overwrites the `output.elasticsearch.username` and
# `output.elasticsearch.password` settings. The format is `<user>:<pass>`.
#cloud.auth:
# ================================== Outputs ===================================
# Configure what output to use when sending the data collected by the beat.
# ---------------------------- Elasticsearch Output ----------------------------
#output.elasticsearch:
  # Array of hosts to connect to.
  hosts: ["localhost:9200"]
  # Protocol - either `http` (default) or `https`.
  #protocol: "https"
  # Authentication credentials - either API key or username/password.
  #api_key: "id:api_key"
  #username: "elastic"
  #password: "changeme"
# ------------------------------ Logstash Output -------------------------------
#output.logstash:
  # The Logstash hosts
  #hosts: ["localhost:5044"]
  # Optional SSL. By default is off.
  # List of root certificates for HTTPS server verifications
  #ssl.certificate_authorities: ["/etc/pki/root/ca.pem"]
  # Certificate for SSL client authentication
  #ssl.certificate: "/etc/pki/client/cert.pem"
  # Client Certificate Key
  #ssl.key: "/etc/pki/client/cert.key"
# -------------------------------- Kafka Output --------------------------------
output.kafka:
  # Boolean flag to enable or disable the output module.
  enabled: true
  # The list of Kafka broker addresses from which to fetch the cluster metadata.
  # The cluster metadata contain the actual Kafka brokers events are published
  # to.
  hosts: ["172.16.20.220:9092","172.16.20.221:9092","172.16.20.222:9092"]
  # The Kafka topic used for produced events. The setting can be a format string
  # using any event field. To set the topic from document type use `%{[type]}`.
  topic: '%{[fields.topic]}'
  # The Kafka event key setting. Use format string to create a unique event key.
  # By default no event key will be generated.
  #key: ''
  # The Kafka event partitioning strategy. Default hashing strategy is `hash`
  # using the `output.kafka.key` setting or randomly distributes events if
  # `output.kafka.key` is not configured.
  partition.hash:
    # If enabled, events will only be published to partitions with reachable
    # leaders. Default is false.
    reachable_only: true
    # Configure alternative event field names used to compute the hash value.
    # If empty `output.kafka.key` setting will be used.
    # Default value is empty list.
    #hash: []
  # Authentication details. Password is required if username is set.
  #username: ''
  #password: ''
  # SASL authentication mechanism used. Can be one of PLAIN, SCRAM-SHA-256 or SCRAM-SHA-512.
  # Defaults to PLAIN when `username` and `password` are configured.
  #sasl.mechanism: ''
  # Kafka version Filebeat is assumed to run against. Defaults to the "1.0.0".
  #version: '1.0.0'
  # Configure JSON encoding
  #codec.json:
    # Pretty-print JSON event
    #pretty: false
    # Configure escaping HTML symbols in strings.
    #escape_html: false
  # Metadata update configuration. Metadata contains leader information
  # used to decide which broker to use when publishing.
  #metadata:
    # Max metadata request retry attempts when cluster is in middle of leader
    # election. Defaults to 3 retries.
    #retry.max: 3
    # Wait time between retries during leader elections. Default is 250ms.
    #retry.backoff: 250ms
    # Refresh metadata interval. Defaults to every 10 minutes.
    #refresh_frequency: 10m
    # Strategy for fetching the topics metadata from the broker. Default is false.
    #full: false
  # The number of concurrent load-balanced Kafka output workers.
  #worker: 1
  # The number of times to retry publishing an event after a publishing failure.
  # After the specified number of retries, events are typically dropped.
  # Some Beats, such as Filebeat, ignore the max_retries setting and retry until
  # all events are published.  Set max_retries to a value less than 0 to retry
  # until all events are published. The default is 3.
  #max_retries: 3
  # The number of seconds to wait before trying to republish to Kafka
  # after a network error. After waiting backoff.init seconds, the Beat
  # tries to republish. If the attempt fails, the backoff timer is increased
  # exponentially up to backoff.max. After a successful publish, the backoff
  # timer is reset. The default is 1s.
  #backoff.init: 1s
  # The maximum number of seconds to wait before attempting to republish to
  # Kafka after a network error. The default is 60s.
  #backoff.max: 60s
  # The maximum number of events to bulk in a single Kafka request. The default
  # is 2048.
  #bulk_max_size: 2048
  # Duration to wait before sending bulk Kafka request. 0 is no delay. The default
  # is 0.
  #bulk_flush_frequency: 0s
  # The number of seconds to wait for responses from the Kafka brokers before
  # timing out. The default is 30s.
  #timeout: 30s
  # The maximum duration a broker will wait for number of required ACKs. The
  # default is 10s.
  #broker_timeout: 10s
  # The number of messages buffered for each Kafka broker. The default is 256.
  #channel_buffer_size: 256
  # The keep-alive period for an active network connection. If 0s, keep-alives
  # are disabled. The default is 0 seconds.
  #keep_alive: 0
  # Sets the output compression codec. Must be one of none, snappy and gzip. The
  # default is gzip.
  compression: gzip
  # Set the compression level. Currently only gzip provides a compression level
  # between 0 and 9. The default value is chosen by the compression algorithm.
  #compression_level: 4
  # The maximum permitted size of JSON-encoded messages. Bigger messages will be
  # dropped. The default value is 1000000 (bytes). This value should be equal to
  # or less than the broker's message.max.bytes.
  max_message_bytes: 1000000
  # The ACK reliability level required from broker. 0=no response, 1=wait for
  # local commit, -1=wait for all replicas to commit. The default is 1.  Note:
  # If set to 0, no ACKs are returned by Kafka. Messages might be lost silently
  # on error.
  required_acks: 1
  # The configurable ClientID used for logging, debugging, and auditing
  # purposes.  The default is "beats".
  #client_id: beats
  # Use SSL settings for HTTPS.
  #ssl.enabled: true
  # Controls the verification of certificates. Valid values are:
  # * full, which verifies that the provided certificate is signed by a trusted
  # authority (CA) and also verifies that the server's hostname (or IP address)
  # matches the names identified within the certificate.
  # * strict, which verifies that the provided certificate is signed by a trusted
  # authority (CA) and also verifies that the server's hostname (or IP address)
  # matches the names identified within the certificate. If the Subject Alternative
  # Name is empty, it returns an error.
  # * certificate, which verifies that the provided certificate is signed by a
  # trusted authority (CA), but does not perform any hostname verification.
  #  * none, which performs no verification of the server's certificate. This
  # mode disables many of the security benefits of SSL/TLS and should only be used
  # after very careful consideration. It is primarily intended as a temporary
  # diagnostic mechanism when attempting to resolve TLS errors; its use in
  # production environments is strongly discouraged.
  # The default value is full.
  #ssl.verification_mode: full
  # List of supported/valid TLS versions. By default all TLS versions from 1.1
  # up to 1.3 are enabled.
  #ssl.supported_protocols: [TLSv1.1, TLSv1.2, TLSv1.3]
  # List of root certificates for HTTPS server verifications
  #ssl.certificate_authorities: ["/etc/pki/root/ca.pem"]
  # Certificate for SSL client authentication
  #ssl.certificate: "/etc/pki/client/cert.pem"
  # Client certificate key
  #ssl.key: "/etc/pki/client/cert.key"
  # Optional passphrase for decrypting the certificate key.
  #ssl.key_passphrase: ''
  # Configure cipher suites to be used for SSL connections
  #ssl.cipher_suites: []
  # Configure curve types for ECDHE-based cipher suites
  #ssl.curve_types: []
  # Configure what types of renegotiation are supported. Valid options are
  # never, once, and freely. Default is never.
  #ssl.renegotiation: never
  # Configure a pin that can be used to do extra validation of the verified certificate chain,
  # this allow you to ensure that a specific certificate is used to validate the chain of trust.
  #
  # The pin is a base64 encoded string of the SHA-256 fingerprint.
  #ssl.ca_sha256: ""
  # A root CA HEX encoded fingerprint. During the SSL handshake if the
  # fingerprint matches the root CA certificate, it will be added to
  # the provided list of root CAs (`certificate_authorities`), if the
  # list is empty or not defined, the matching certificate will be the
  # only one in the list. Then the normal SSL validation happens.
  #ssl.ca_trusted_fingerprint: ""
  # Enable Kerberos support. Kerberos is automatically enabled if any Kerberos setting is set.
  #kerberos.enabled: true
  # Authentication type to use with Kerberos. Available options: keytab, password.
  #kerberos.auth_type: password
  # Path to the keytab file. It is used when auth_type is set to keytab.
  #kerberos.keytab: /etc/security/keytabs/kafka.keytab
  # Path to the Kerberos configuration.
  #kerberos.config_path: /etc/krb5.conf
  # The service name. Service principal name is contructed from
  # service_name/hostname@realm.
  #kerberos.service_name: kafka
  # Name of the Kerberos user.
  #kerberos.username: elastic
  # Password of the Kerberos user. It is used when auth_type is set to password.
  #kerberos.password: changeme
  # Kerberos realm.
  #kerberos.realm: ELASTIC
  # Enables Kerberos FAST authentication. This may
  # conflict with certain Active Directory configurations.
  #kerberos.enable_krb5_fast: false
# ================================= Processors =================================
processors:
  - add_host_metadata:
      when.not.contains.tags: forwarded
  - add_cloud_metadata: ~
  - add_docker_metadata: ~
  - add_kubernetes_metadata: ~
# ================================== Logging ===================================
# Sets log level. The default log level is info.
# Available log levels are: error, warning, info, debug
#logging.level: debug
# At debug level, you can selectively enable logging only for some components.
# To enable all selectors use ["*"]. Examples of other selectors are "beat",
# "publisher", "service".
#logging.selectors: ["*"]
# ============================= X-Pack Monitoring ==============================
# Filebeat can export internal metrics to a central Elasticsearch monitoring
# cluster.  This requires xpack monitoring to be enabled in Elasticsearch.  The
# reporting is disabled by default.
# Set to true to enable the monitoring reporter.
#monitoring.enabled: false
# Sets the UUID of the Elasticsearch cluster under which monitoring data for this
# Filebeat instance will appear in the Stack Monitoring UI. If output.elasticsearch
# is enabled, the UUID is derived from the Elasticsearch cluster referenced by output.elasticsearch.
#monitoring.cluster_uuid:
# Uncomment to send the metrics to Elasticsearch. Most settings from the
# Elasticsearch output are accepted here as well.
# Note that the settings should point to your Elasticsearch *monitoring* cluster.
# Any setting that is not set is automatically inherited from the Elasticsearch
# output configuration, so if you have the Elasticsearch output configured such
# that it is pointing to your Elasticsearch monitoring cluster, you can simply
# uncomment the following line.
#monitoring.elasticsearch:
# ============================== Instrumentation ===============================
# Instrumentation support for the filebeat.
#instrumentation:
    # Set to true to enable instrumentation of filebeat.
    #enabled: false
    # Environment in which filebeat is running on (eg: staging, production, etc.)
    #environment: ""
    # APM Server hosts to report instrumentation results to.
    #hosts:
    #  - http://localhost:8200
    # API Key for the APM Server(s).
    # If api_key is set then secret_token will be ignored.
    #api_key:
    # Secret token for the APM Server(s).
    #secret_token:
# ================================= Migration ==================================
# This allows to enable 6.7 migration aliases
#migration.6_to_7.enabled: true


  • 执行filebeat启动命令


./filebeat -e -c filebeat.yml


后台启动命令


nohup ./filebeat -e -c filebeat.yml >/dev/null 2>&1 &


停止命令


ps -ef |grep filebeat
kill -9 进程号


六、测试配置是否正确


1、测试filebeat是否能够采集log文件并发送到Kafka


  • 在kafka服务器开启消费者,监听api_log主题和operation_log主题


./kafka-console-consumer.sh --bootstrap-server 172.16.20.221:9092 --topic api_log
./kafka-console-consumer.sh --bootstrap-server 172.16.20.222:9092 --topic operation_log


  • 手动写入日志文件,按照filebeat配置的采集目录写入


echo "api log1111" > /data/gitegg/log/gitegg-service-system/api.log
echo "operation log1111" > /data/gitegg/log/gitegg-service-system/operation.log


  • 观察消费者是消费到日志推送内容

    微信图片_20220519224952.png
    api_log


微信图片_20220519224956.png

operation_log


2、测试logstash是消费Kafka的日志主题,并将日志内容存入Elasticsearch


  • 手动写入日志文件


echo "api log8888888888888888888888" > /data/gitegg/log/gitegg-service-system/api.log
echo "operation loggggggggggggggggggg" > /data/gitegg/log/gitegg-service-system/operation.log



自动新增的两个index,规则是logstash中配置的


微信图片_20220519225000.png

image.png


数据浏览页可以看到Elasticsearch中存储的日志数据内容,说明我们的配置已经生效。


微信图片_20220519225004.png


image.png


七、配置Kibana用于日志统计和展示


  • 依次点击左侧菜单Management -> Kibana -> Data Views -> Create data view , 输入logstash_* ,选择@timestamp,再点击Create data view按钮,完成创建。

微信图片_20220519225006.png
image.png

微信图片_20220519225009.png
Kibana

微信图片_20220519225012.png
image.png

微信图片_20220519225016.png
image.png

  • 点击日志分析查询菜单Analytics -> Discover,选择logstash_* 进行日志查询

    微信图片_20220519225019.png
    分析菜单

    微信图片_20220519225022.png
    查询结果页
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
28天前
|
Dubbo Java 应用服务中间件
Spring Cloud Dubbo:微服务通信的高效解决方案
【10月更文挑战第15天】随着信息技术的发展,微服务架构成为企业应用开发的主流。Spring Cloud Dubbo结合了Dubbo的高性能RPC和Spring Cloud的生态系统,提供高效、稳定的微服务通信解决方案。它支持多种通信协议,具备服务注册与发现、负载均衡及容错机制,简化了服务调用的复杂性,使开发者能更专注于业务逻辑的实现。
53 2
|
28天前
|
JSON Java 数据格式
【微服务】SpringCloud之Feign远程调用
本文介绍了使用Feign作为HTTP客户端替代RestTemplate进行远程调用的优势及具体使用方法。Feign通过声明式接口简化了HTTP请求的发送,提高了代码的可读性和维护性。文章详细描述了Feign的搭建步骤,包括引入依赖、添加注解、编写FeignClient接口和调用代码,并提供了自定义配置的示例,如修改日志级别等。
76 1
|
6月前
|
存储 监控 数据可视化
日志分析对决:揭示 ELK 与 GrayLog 的优势和差异
日志分析对决:揭示 ELK 与 GrayLog 的优势和差异
1377 0
|
6月前
|
存储 Prometheus 监控
Prometheus vs. ELK Stack:容器监控与日志管理工具的较量
随着容器化技术的广泛应用,容器监控与日志管理成为了关键任务。本文将对两种常用工具进行比较与选择,分别是Prometheus和ELK Stack。Prometheus是一款开源的监控系统,专注于时序数据的收集和告警。而ELK Stack则是一套完整的日志管理解决方案,由Elasticsearch、Logstash和Kibana三个组件组成。通过比较它们的特点、优势和适用场景,读者可以更好地了解如何选择适合自己需求的工具。
|
2月前
|
存储 消息中间件 网络协议
日志平台-ELK实操系列(一)
日志平台-ELK实操系列(一)
|
15天前
|
存储 监控 安全
|
3月前
|
消息中间件 Kafka 开发工具
rsyslog+ELK收集Cisco日志
rsyslog+ELK收集Cisco日志
|
3月前
|
运维 监控 Ubuntu
一键启动日志魔法:揭秘ELK自动安装脚本的神秘面纱!
【8月更文挑战第9天】在数据驱动时代,高效处理日志至关重要。ELK Stack(Elasticsearch、Logstash、Kibana)是强大的日志分析工具,但其复杂的安装配置常让初学者望而却步。本文介绍如何编写ELK自动安装脚本,简化部署流程。脚本适用于Ubuntu系统,自动完成ELK下载、安装及基本配置,包括依赖项安装、服务启动及自启设置,极大降低了使用门槛,助力运维人员和开发者轻松构建日志分析平台。
154 6
|
3月前
|
存储 应用服务中间件 nginx
部署ELK+filebeat收集nginx日志
部署ELK+filebeat收集nginx日志
127 0
部署ELK+filebeat收集nginx日志
|
3月前
|
存储 消息中间件 监控
Java日志详解:日志级别,优先级、配置文件、常见日志管理系统ELK、日志收集分析
Java日志详解:日志级别,优先级、配置文件、常见日志管理系统、日志收集分析。日志级别从小到大的关系(优先级从低到高): ALL < TRACE < DEBUG < INFO < WARN < ERROR < FATAL < OFF 低级别的会输出高级别的信息,高级别的不会输出低级别的信息