大数据开发工程师需要了解的【数仓中的指标体系】

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 笔记

(1)为什么要构建指标体系


指标体系的理解:

指标体系是将零散单点的具有相互联系的的指标,系统化的组织起来。通过单点看全局,通过全局解决单点的问题。

比如:本月销售净利润为20W,上月销售净利润为30W。从单点看是盈利的,但从全局看是亏损的。

1.png


建立业务量化衡量的标准:

指标体系可以建立业务量化衡量的标准,数据分析的目的就是说明、衡量、预测业务的发展,比方说衡量一个门店

经营的状况,一个门店月净利润20万元,刚看这个指标感觉这个店盈利不少,发展应该不错,但是再一看前两个月

的净利润,发现前两个月的净利润都是40万以上,增加了这一个指标,我们就发现了这个店的经营状况可能存在问

题了。

在衡量业务经营状况的过程中,单一数据指标衡量很可能片面化,需要通过补充其他的指标来使我们的判断更加准

确。因此,搭建系统的指标体系,才能全面衡量业务发展情况,促进业务有序增长。


减少重复工作,提高分析效率:

有了指标体系,数据分析师就可以少干点临时提数的活,指标体系建立后应该能覆盖大部分临时数据分析需求,如

果指标体系搭建完了,还是有很多临时的分析需求涌现,那证明这个指标体系是有问题的


帮助快速定位问题:

建立了系统指标体系,有了过程与结果指标,有了指标的前后关联关系,就可以通过回溯与下钻,快速找到关键指

标波动的原因,老板让你分析原因,再也不用愁眉苦脸了。

2.png



(2)如何搭建有效的指标体系


重点关注的3个方面:


搭建指标体系要有重点,不能只是罗列指标


这是很多数据分析师都会犯的通病,上来先把大量的指标列好,也不说明优先级,先看哪个后看哪个,业务根本就看不懂。

搭建指标体系要有目标


很多人习惯了列指标,自有一套指标拆分的套路,不管我们要解决的业务问题是什么,反正就是按照时间、渠道、区域等纬度拆分,分来分去也没个具体的标准,最后还要纠结到底指标变化多少才是问题

指标体系不是越全越好,和业务最贴切的才是最好的


这个我在之前的指标体系文章里反复强调了,写文章的时候会为了吸引眼球,标题写XX行业指标体系大全,虽然我给大

家整理指标体系的时候尽量概括多个业务场景,指标列的很详细,但是不同的公司,业务复杂不一样,没有一套指标系统是能够通用的,只有和业务最贴切的才是最好用的

体系指标的建设流程:

3.png


(3)指标类型及关系


指标类型:

4.png

派生指标规则:

5.png6.png



(4)企业常用的指标体系方法论




7.png

(5)指标体系整体架构


8.png


(6)企业中指标常见的问题


9.png


(7)如何划分原子指标和派生指标


如果修饰词有对应的维表,那就可以作为派生指标

如果修饰词没有对应的维表,那就作为原子指标管理


相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
2月前
|
消息中间件 监控 数据可视化
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
108 2
|
4月前
|
SQL 分布式计算 DataWorks
DataWorks产品使用合集之如何开发ODPS Spark任务
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
2月前
|
分布式计算 大数据 Serverless
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
在2024云栖大会开源大数据专场上,阿里云宣布推出实时计算Flink产品的新一代向量化流计算引擎Flash,该引擎100%兼容Apache Flink标准,性能提升5-10倍,助力企业降本增效。此外,EMR Serverless Spark产品启动商业化,提供全托管Serverless服务,性能提升300%,并支持弹性伸缩与按量付费。七猫免费小说也分享了其在云上数据仓库治理的成功实践。其次 Flink Forward Asia 2024 将于11月在上海举行,欢迎报名参加。
246 6
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
|
1月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
72 1
|
1月前
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
77 0
|
4月前
|
消息中间件 存储 大数据
大数据-数据仓库-实时数仓架构分析
大数据-数据仓库-实时数仓架构分析
168 1
|
3月前
|
SQL 分布式计算 大数据
代码编码原则和规范大数据开发
此文档详细规定了SQL代码的编写规范,包括代码的清晰度,执行效率,以及注释的必要性。它强调所有SQL关键字需统一使用大写或小写,并禁止使用select *操作。此外,还规定了代码头部的信息模板,字段排列方式,INSERT, SELECT子句的格式,运算符的使用,CASE语句编写规则,查询嵌套规范,表别名定义,以及SQL注释的添加方法。这些规则有助于提升代码的可读性和可维护性。
69 0
|
3月前
|
SQL 分布式计算 大数据
大数据开发SQL代码编码原则和规范
这段SQL编码原则强调代码的功能完整性、清晰度、执行效率及可读性,通过统一关键词大小写、缩进量以及禁止使用模糊操作如select *等手段提升代码质量。此外,SQL编码规范还详细规定了代码头部信息、字段与子句排列、运算符前后间隔、CASE语句编写、查询嵌套、表别名定义以及SQL注释的具体要求,确保代码的一致性和维护性。
113 0
|
4月前
|
存储 运维 Cloud Native
"Flink+Paimon:阿里云大数据云原生运维数仓的创新实践,引领实时数据处理新纪元"
【8月更文挑战第2天】Flink+Paimon在阿里云大数据云原生运维数仓的实践
295 3
|
5月前
|
SQL 分布式计算 MaxCompute
SQL开发问题之对于ODPS中的UNION操作,执行计划的问题如何解决
SQL开发问题之对于ODPS中的UNION操作,执行计划的问题如何解决

热门文章

最新文章