从 0 到 1,如何徒手撸个 Python 插件系统?

简介:

号主从事算法服务开发多年,临近三月的尾巴,输出一个插件化部署算法服务的解决方案。篇幅内容都经过生产实践,如果对各位号友有所帮助,请拽个三连:点赞、关注和转发

插件机制背景

插件化机制使框架业务模块的实现相解耦,框架服务抽象出统一的交互接口,业务模块只要符合交互标准即可做到插件替换。

微内核架构是插件架构模式的一种典型实现,常常把微内核架构也叫做插件式架构。
当前微内核架构也被应用在许多我们熟知的产品,比如:操作系统、Chrome浏览器、Eclipse编辑器等

微内核架构包含两个组件:核心系统(core system)和插件模块(plugin component)

  • 核心系统只包含让系统可以运作的最小功能
  • 插件模块则包含一些特殊处理逻辑、额外的功能,用于提供更多的业务能力

具体如下图:

Python 插件核心

__import__()函数是我们本篇的核心,具体实现都围绕这个函数定制展开。

作用:用于动态加载类和函数。如果一个模块经常变化就可以使用 __import__() 来动态载入。
语法:

__import__(name, globals=None, locals=None, fromlist=(), level=0)
    name[必须]:模块名称
    globals - 全局变量集合,默认为None
    locals - 局部变量集合,默认为None
    fromlist - 是否导入子模块,看上去是导入模块的列表。但实际是一个判断条件,只要设置为非空的值,且模块名称是带有子模块的,将导入子模块。例如:sys.path。当不设置时,返回sys,如果设置为非空值,则返回ntpath(path模块)
    level - 绝对或者相对导入

此处我们做个简单的验证,通过__import__实现和import一样的导入能力。分别验证导入os.path和导入其对应的子模块,具体如下:

>>> __import__('os.path')
<module 'os' from '/opt/anaconda3/envs/python38/lib/python3.8/os.py'>
>>> __import__('os.path', fromlist=['None'])
<module 'posixpath' from '/opt/anaconda3/envs/python38/lib/python3.8/posixpath.py'>
>>> __import__('os.path', fromlist=['path'])
<module 'posixpath' from '/opt/anaconda3/envs/python38/lib/python3.8/posixpath.py'>
>>>

以上只是在 shell 里面进行验证,那 Python 代码里面该如何写呢?有两种方式:
直接引用加载

p = __import__('widget.demo.infer', fromlist='infer')  # 导入
print(p.Demo)      # 取出类变量
# 打印结果
<class 'widget.demo.infer.Demo'>

Importlib包方式

import importlib    # 导入工具包
demo = importlib.import_module('.demo.infer', package='widget')
print(demo)
# 打印结果
<module 'widget.demo.infer' from '/Users/**/language-bootcamp/python/plugin_system/widget/demo/infer.py'>
print(demo.Demo)
# 打印结果
<class 'widget.demo.infer.Demo'>

插件服务基本组成

PluginCore:通过Plugin Manager调用算法,负责业务逻辑的实现
PluginManger: 通过读取配置文件,负责各种插件的加载、管理、甚至热更新

此处,Python 插件相关的知识点已经讲完了,下面进行算法插件化部署相关内容,Go Go Go!

算法服务基本组成

如上,一个完整的算法服务包含三部分:API逻辑算法逻辑模型文件

API逻辑:服务相关逻辑,比如:HTTP 相关的请求/响应设置或 gRPC 远程交互约定等。
算法逻辑:算法相关逻辑,比如:数据的前置预处理、后置标签映射等。
模型文件:算法运行依赖项。

可能某些号友会发问:一定是三个部分,难道不能两个,甚至一个?
此处只是从纯业务功能划分,便于理解。具体代码实现,都可以。

插件管理器定义

定义了插件管理的方法,插件功能加载、插件获取方法实现

class BaseManager(object):
    """插件管理基类"""
    
    def __init__(self) -> None:
        """加载插件配置文件"""
        pass

    def get_plugin(self, name):
        """根据调用,返回插件实例"""
        raise RuntimeError('not implemented yet!')

    def get_total_plugin(self):
        """返回所有插件"""
        raise RuntimeError('not implemented yet!')

算法插件定义

每个插件需要实现公共接口方法。

class ApiBase(object):
    """API服务基类"""
    
    def __init__(self) -> None:
        "模型初始化加载"
    
    def predict(self, req_dict={}):
        """
        预测方法,推理算法入口
        :param req_dict:        请求参数,词典类型,eg:{"name":"value"}
        :return:                返回结果,词典类型,eg:{"name":"value"}
        """
        raise RuntimeError('not implemented \'predict\' method')

    def version(self):
        "版本方法"
        return '20220330'

配置文件定义

PluginManager通过配置文件进行可选插件指定加载配置,包括:插件名 、插件路径等信息。

{
    "demo":{
        "infer_dir":"widget.demo.infer"
    },
    "digit_recognition":{
        "infer_dir":"widget.digit_recognition.infer"
    }
}

插件扩展

有些时候为了解耦,需要调用 C 代码,以 linux 平台为例,我们讲讲 python 如何调用 .so 文件进行扩展。

# -*- coding: utf-8 -*-
import json
import ctypes
from ctypes import c_float
from common.logger import LOG

class C_Type(object):
    def __init__(self) -> None:
        self.so = ctypes.CDLL('widget/ctype/lib/sum.so')
    
    def predict(self, req_dict={}):
        LOG.info("this is ctype infer, req_dict=%s" % json.dumps(req_dict))
        return req_dict

    def version(self):
        return '20220326'

def get_plugin_class():
    return C_Type

总结一下

高可扩展:通过插件机制,我们可以很方便进行服务扩展
部署灵活:也能通过配置发布单独服务或者多个服务
代码解耦:最主要能实现各个功能模块的开发解耦,方便进行业务定制

但插件的使用得注意,尽量选择依赖环境和处理性能基本一致的业务进行插件构建,否则会有性能问题,慢插件影响快插件的推理速度。

好了,以上就是今天的全部内容,以上所有代码都汇总到github.com/codetodo-io/language-bootcamp,号友们可以下载演示。

❤️❤️❤️读者每一份热爱都是笔者前进的动力!
我是三十一,感谢各位朋友:求点赞、求评论、求转发,大家下期见!

相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
20 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
26天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
249 55
|
7天前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
77 4
|
7天前
|
前端开发 搜索推荐 编译器
【01】python开发之实例开发讲解-如何获取影视网站中经过保护后的视频-用python如何下载无法下载的视频资源含m3u8-python插件之dlp-举例几种-详解优雅草央千澈
【01】python开发之实例开发讲解-如何获取影视网站中经过保护后的视频-用python如何下载无法下载的视频资源含m3u8-python插件之dlp-举例几种-详解优雅草央千澈
【01】python开发之实例开发讲解-如何获取影视网站中经过保护后的视频-用python如何下载无法下载的视频资源含m3u8-python插件之dlp-举例几种-详解优雅草央千澈
|
14天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
109 66
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
173 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
|
4天前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
18 3
|
16天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
47 5