Flink SQL之Catalogs

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 笔记

(1)Catalogs主要定义


Catalog提供了元数据信息,例如数据库、表、分区、视图以及数据库或其他外部系统中存储的函数和信息。

元数据可以是临时的,例如临时表、或者通过TableEnvironment注册的UDF,也可以是持久化的,例如Hive Metastore中的元数据。

Catalog提供了一个统一的API,用于管理元数据,并使其可以从Table API和 SQL查询语句中来访问。


(2)Catalogs类型


GenericInMemoryCatalog

GenericInMemoryCatalog 是基于内存实现的 Catalog,所有元数据只在 session 的生命周期内可用。


JdbcCatalog

JdbcCatalog 使得用户可以将 Flink 通过 JDBC 协议连接到关系数据库。PostgresCatalog 是当前实现的唯一一种 JDBC Catalog。


HiveCatalog

HiveCatalog 有两个用途:作为原生 Flink 元数据的持久化存储,以及作为读写现有 Hive 元数据的接口。


警告 Hive Metastore 以小写形式存储所有元数据对象名称。而 GenericInMemoryCatalog 区分大小写。


(3)Catalogs在Flink SQL架构中的位置



15.png


(4)Catalogs 操作

使用 SQL DDL

TableEnvironment tableEnv = ...
// Create a HiveCatalog 
Catalog catalog = new HiveCatalog("myhive", null, "<path_of_hive_conf>");
// Register the catalog
tableEnv.registerCatalog("myhive", catalog);
// Create a catalog database
tableEnv.executeSql("CREATE DATABASE mydb WITH (...)");
// Create a catalog table
tableEnv.executeSql("CREATE TABLE mytable (name STRING, age INT) WITH (...)");
tableEnv.listTables(); // should return the tables in current catalog and database.

数据库操作

// create database
catalog.createDatabase("mydb", new CatalogDatabaseImpl(...), false);
// drop database
catalog.dropDatabase("mydb", false);
// alter database
catalog.alterDatabase("mydb", new CatalogDatabaseImpl(...), false);
// get databse
catalog.getDatabase("mydb");
// check if a database exist
catalog.databaseExists("mydb");
// list databases in a catalog
catalog.listDatabases("mycatalog");

表操作

// create table
catalog.createTable(new ObjectPath("mydb", "mytable"), new CatalogTableImpl(...), false);
// drop table
catalog.dropTable(new ObjectPath("mydb", "mytable"), false);
// alter table
catalog.alterTable(new ObjectPath("mydb", "mytable"), new CatalogTableImpl(...), false);
// rename table
catalog.renameTable(new ObjectPath("mydb", "mytable"), "my_new_table");
// get table
catalog.getTable("mytable");
// check if a table exist or not
catalog.tableExists("mytable");
// list tables in a database
catalog.listTables("mydb");



相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
SQL 存储 API
Flink实践:通过Flink SQL进行SFTP文件的读写操作
虽然 Apache Flink 与 SFTP 之间的直接交互存在一定的限制,但通过一些创造性的方法和技术,我们仍然可以有效地实现对 SFTP 文件的读写操作。这既展现了 Flink 在处理复杂数据场景中的强大能力,也体现了软件工程中常见的问题解决思路——即通过现有工具和一定的间接方法来克服技术障碍。通过这种方式,Flink SQL 成为了处理各种数据源,包括 SFTP 文件,在内的强大工具。
173 15
|
1月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
46 0
|
2月前
|
SQL 安全 数据处理
揭秘数据脱敏神器:Flink SQL的神秘力量,守护你的数据宝藏!
【9月更文挑战第7天】在大数据时代,数据管理和处理尤为重要,尤其在保障数据安全与隐私方面。本文探讨如何利用Flink SQL实现数据脱敏,为实时数据处理提供有效的隐私保护方案。数据脱敏涉及在处理、存储或传输前对敏感数据进行加密、遮蔽或替换,以遵守数据保护法规(如GDPR)。Flink SQL通过内置函数和表达式支持这一过程。
84 2
|
2月前
|
SQL 大数据 数据处理
奇迹降临!解锁 Flink SQL 简单高效的终极秘籍,开启数据处理的传奇之旅!
【9月更文挑战第7天】在大数据处理领域,Flink SQL 因其强大功能与简洁语法成为开发者首选。本文分享了编写高效 Flink SQL 的实用技巧:理解数据特征及业务需求;灵活运用窗口函数(如 TUMBLE 和 HOP);优化连接操作,优先采用等值连接;合理选择数据类型以减少计算资源消耗。结合实际案例(如实时电商数据分析),并通过定期性能测试与调优,助力开发者在大数据处理中更得心应手,挖掘更多价值信息。
46 1
|
3月前
|
SQL 资源调度 流计算
慢sql治理问题之在 Flink 中, userjar 分发问题如何优化
慢sql治理问题之在 Flink 中, userjar 分发问题如何优化
|
3月前
|
SQL 设计模式 数据处理
Flink SQL 在快手实践问题之状态兼容的终极方案特点内容如何解决
Flink SQL 在快手实践问题之状态兼容的终极方案特点内容如何解决
24 0
|
2月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
4月前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
115 13
|
4月前
|
SQL
解锁 SQL Server 2022的时间序列数据功能
【7月更文挑战第14天】要解锁SQL Server 2022的时间序列数据功能,可使用`generate_series`函数生成整数序列,例如:`SELECT value FROM generate_series(1, 10)。此外,`date_bucket`函数能按指定间隔(如周)对日期时间值分组,这些工具结合窗口函数和其他时间日期函数,能高效处理和分析时间序列数据。更多信息请参考官方文档和技术资料。

热门文章

最新文章

下一篇
无影云桌面