matlab利用已有激光雷达数据寻找地平面和车辆周围的障碍物仿真实验

简介: 简介:matlab利用已有激光雷达数据寻找地平面和车辆周围的障碍物仿真实验

第一步:显示激光三维点云

fileName = 'lidarData_ConstructionRoad.pcap';   
deviceModel = 'HDL32e';   
veloReader = velodyneFileReader(fileName,deviceModel);   
ptCloud = readFrame(veloReader);   
xlimits = [-25,45];ylimits = [-25,45];zlimits = [-20,20];   
lidarViewer = pcplayer(xlimits,ylimits,zlimits);             
xlabel(lidarViewer.Axes,'X(m)')   
ylabel(lidarViewer.Axes,'Y(m)')   
zlabel(lidarViewer.Axes,'Z(m)')  
view(lidarViewer,ptCloud)   

image.png


第二步:激光点云颜色映射。


为了分割属于地平面、主车辆和附近障碍物的点,需要设置颜色标签,并进行颜色映射。

colorLabels=[0,0.4470,0.7410;0.4660 0.6740 0.1880;0.929,0.694,0.125;0.635,0.078,0.1840];
colors.Unlabeled=1;
colors.Ground=2;
colors.Ego=3;
colors.Obstacle=4;
colormap(lidarViewer.Axes, colorLabels)

image.png


第三步:分割主车辆


vehicleDims=vehicleDimensions ();
mountLocation= [vehicleDims.Length/2-vehicleDims.RearOverhang,...
    0,vehicleDims.Height];
points=struct();
points.EgoPoints=helperSegmentEgoFromLidarData(ptCloud,vehicleDims, mountLocation);
closePlayer=false;
helperUpdateView(lidarViewer,ptCloud,points,colors,closePlayer);

helperSegmentEgoFromLidarData函数程序如下:

function egoPoints=helperSegmentEgoFromLidarData(ptCloud, vehicleDims,mountLocation)
bufferZone= [0.1,0.1,0.1];
egoXMin=-vehicleDims.RearOverhang-bufferZone (1);
egoXMax=egoXMin+vehicleDims.Length+bufferZone (1);
egoYMin=-vehicleDims.Width/2-bufferZone (2);
egoYMax=egoYMin+vehicleDims.Width+bufferZone (2);
egoZMin=0-bufferZone (3);
egoZMax=egoZMin+vehicleDims. Height+bufferZone (3);
egoXLimits= [egoXMin, egoXMax];
egoYLimits= [egoYMin, egoYMax];
egoZLimits= [egoZMin, egoZMax];
egoXLimits=egoXLimits-mountLocation(1);
egoYLimits=egoYLimits-mountLocation(2);
egoZLimits=egoZLimits-mountLocation(3);
egoPoints=ptCloud.Location(:,:,1)>egoXLimits(1)...
   & ptCloud. Location(:,:,1) <egoXLimits(2)...
   & ptCloud. Location(:,:,2) >egoYLimits(1)...
   & ptCloud. Location(:,:,2) <egoYLimits(2)...
   & ptCloud. Location(:,:,3) >egoZLimits(1)...
   & ptCloud. Location(:,:,3) <egoZLimits(2);
End

helperUpdateView函数程序如下:

function isPlayerOpen=helperUpdateView(lidarViewer,ptCloud,points,colors,closePlayer)
if closePlayer
     hide (lidarViewer);
     isPlayerOpen=false;
     return;
end
scanSize=size (ptCloud.Location);
scanSize=scanSize (1:2);
colormapValues=ones (scanSize,'like',ptCloud.Location) * colors.Unlabeled;
if isfield(points,'GroundPoints') 
    colormapValues (points.GroundPoints)=colors.Ground;
end
if isfield(points, 'EgoPoints')
    colormapValues (points.EgoPoints)=colors.Ego;
end
if isfield (points, 'ObstaclePoints')
    colormapValues (points.ObstaclePoints)=colors.Obstacle;   
end
view (lidarViewer,ptCloud. Location, colormapValues)
isPlayerOpen=isOpen (lidarViewer);
End

image.png


第四步:分割地平面。


为了从激光雷达数据中检测障碍物,首先对地平面进行分段,从有组织的激光雷达数据中分割出属于地平面的点。

elevationDelta = 10;   
points.GroundPoints=segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta', elevationDelta);   
helperUpdateView(lidarViewer,ptCloud,points,colors,closePlayer); 

image.png


第五步:分割障碍物。


nonEgoGroundPoints=~points.EgoPoints &~points.GroundPoints;
ptCloudSegmented=select(ptCloud,nonEgoGroundPoints,'OutputSize','full');
sensorLocation=[0,0,0];
radius=40;
points.ObstaclePoints=findNeighborsInRadius(ptCloudSegmented,sensorLocation,radius);
helperUpdateView(lidarViewer,ptCloud,points,colors,closePlayer);

image.png


第六步:显示激光雷达数据处理结果。


从激光雷达记录的数据序列中处理20s。

reset(veloReader);
stopTime=veloReader.StartTime+seconds(20);
isPlayerOpen=true;
while hasFrame(veloReader)&&veloReader.CurrentTime<stopTime&&isPlayerOpen
    ptCloud=readFrame(veloReader);
    points.EgoPoints=helperSegmentEgoFromLidarData(ptCloud,vehicleDims,mountLocation);
    points.GroundPoints=segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',elevationDelta);
    nonEgoGroundPoints=~points.EgoPoints&~points.GroundPoints;
    ptCloudSegmented=select(ptCloud,nonEgoGroundPoints,'OutputSize','full');
    points.ObstaclePoints=findNeighborsInRadius(ptCloudSegmented,sensorLocation,radius);
    closePlayer=~hasFrame(veloReader);
    isPlayerOpen=helperUpdateView(lidarViewer,ptCloud,points,colors,closePlayer);
end

916534efb4dc435ab49ea9049d83e044.gif

相关文章
|
8天前
|
算法 数据可视化 图形学
网络通信系统的voronoi图显示与能耗分析matlab仿真
在MATLAB2022a中,该程序模拟了两层基站网络,使用泊松分布随机生成Macro和Micro基站,并构建Voronoi图。它计算每个用户的信号强度,选择最强连接,并分析SINR和数据速率。程序还涉及能耗计算,包括传输、接收、处理和空闲能耗的分析。Voronoi图帮助可视化网络连接和优化能源效率。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
- **算法理论:** 利用PSO优化的CNN-GRU,结合CNN的特征提取和GRU的记忆机制,进行时间序列预测。 - **CNN:** 通过卷积捕获序列的结构信息。 - **GRU:** 简化的LSTM,处理序列依赖。 - **预测步骤:** 1. 初始化粒子群,每粒子对应一组模型参数。 2. 训练并评估CNN-GRU模型的验证集MSE。 3. 使用PSO更新参数,寻找最佳配置。 4. 迭代优化直至满足停止准则。 ```
|
2天前
|
监控
基于偏微分方程离散化计算的地下换热器建模与温度检测matlab仿真
**摘要:** 探索地下换热器的建模与温度检测,使用MATLAB2022a进行系统仿真,关注传热过程的热传导、对流和辐射。通过离散化偏微分方程建立数值模型,模拟温度场,考虑地质特性和水流影响。建模以网格单元描述温度变化,采用热电偶、红外和光纤测温技术验证模型并监控温度,各具优缺点。光纤测温法提供高精度和抗干扰的分布式监测。
|
2天前
|
算法 数据安全/隐私保护
基于GA遗传优化算法的Okumura-Hata信道参数估计算法matlab仿真
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
16 7
|
2天前
|
算法 物联网
机会路由MORE协议的matlab性能仿真
摘要: 本研究关注无线Mesh网络中的机会路由与网络编码融合技术,特别是MORE协议。机会路由利用无线特性提高网络效率,而网络编码提升网络吞吐量。在分析这两项技术的基础上,提出改进MORE的方案,优化节点选择和路径测量,以增强网络性能。使用MATLAB2022a进行仿真验证。尽管MORE独立于MAC层并应用线性网络编码,但其ETX测量可能存在不准确问题,该问题成为改进的重点。
|
14天前
|
机器学习/深度学习 算法 计算机视觉
基于深度学习网络的USB摄像头实时视频采集与人脸检测matlab仿真
**摘要 (Markdown格式):** ```markdown - 📹 使用USB摄像头(Tttttttttttttt666)实时视频检测,展示基于YOLOv2在MATLAB2022a的实施效果: ``` Tttttttttttttt1111111111------------5555555555 ``` - 📺 程序核心利用MATLAB视频采集配置及工具箱(Dddddddddddddd),实现图像采集与人脸定位。 - 🧠 YOLOv2算法概览:通过S×S网格预测边界框(B个/网格),含坐标、类别概率和置信度,高效检测人脸。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
**算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ&gt;0增强集成效果,提高预测准确性和系统稳健性。
|
10天前
|
算法
基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试
使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。
|
16天前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
12天前
|
算法
基于VLC可见光通信的室内光通信信道信噪比分析matlab仿真
**算法演示展示了一段VLC通信,使用MATLAB2022a。核心代码片段涉及LED光强度调制。VLC系统由发射器、空气介质和接收器组成,利用OOK等调制技术。图像展示了系统模型。信噪比分析对于理解和提升室内通信的性能至关重要,影响数据速率和系统可靠性。** (Markdown格式) ```