【人工智能】机器学习之Python使用KNN算法进行电影类型预测以及使用KNN算法对鸢尾花进行分类

简介: 使用KNN进行电影类型预测: 给定训练样本集合 解题步骤: 1.计算一个新样本与数据集中所有数据的距离 2.按照距离大小进行递增排序 3.选取距离最小的k个样本 4.确定前k个样本所在类别出现的频率,并输出出现频率最高的类别编写代码,实现对iris数据集的KNN算法分类及预测要求:(1)数据集划分为测试集占20%;(2)n_neighbors=5;(3)评价模型的准确率;(4)使用模型预测未知种类的鸢尾花。(待预测数据:X1=[[1.5 , 3 , 5.8 , 2.2], [6.2 , 2.9 , 4.3 , 1.3]])iris数据集有150组,每组4个数据。

1. 使用KNN进行电影类型预测:

给定训练样本集合如下:

在这里插入图片描述
求解:testData={"老友记": [29, 10, 2, "?片"]}。

解题步骤:
1.计算一个新样本与数据集中所有数据的距离
2.按照距离大小进行递增排序
3.选取距离最小的k个样本
4.确定前k个样本所在类别出现的频率,并输出出现频率最高的类别

import numpy as np


def createDataset():
    '''
    创建训练集,特征值分别为搞笑镜头、拥抱镜头、打斗镜头的数量
    '''
    learning_dataset = {"宝贝当家": [45, 2, 9, "喜剧片"],
              "美人鱼": [21, 17, 5, "喜剧片"],
              "澳门风云3": [54, 9, 11, "喜剧片"],
              "功夫熊猫3": [39, 0, 31, "喜剧片"],
              "谍影重重": [5, 2, 57, "动作片"],
              "叶问3": [3, 2, 65, "动作片"],
              "伦敦陷落": [2, 3, 55, "动作片"],
              "我的特工爷爷": [6, 4, 21, "动作片"],
              "奔爱": [7, 46, 4, "爱情片"],
              "夜孔雀": [9, 39, 8, "爱情片"],
              "代理情人": [9, 38, 2, "爱情片"],
              "新步步惊心": [8, 34, 17, "爱情片"]}
    return learning_dataset


def kNN(learning_dataset,dataPoint,k):
    '''
    kNN算法,返回k个邻居的类别和得到的测试数据的类别
    '''
    # s1:计算一个新样本与数据集中所有数据的距离
    disList=[]
    for key,v in learning_dataset.items():
       #对距离进行平方和开根号
       d=np.linalg.norm(np.array(v[:3])-np.array(dataPoint))
       #round四舍五入保留两位小数,并添加到集合中
       disList.append([key,round(d,2)])

    # s2:按照距离大小进行递增排序
    disList.sort(key=lambda dis: dis[1]) # 常规排序方法,熟悉key的作用
    # s3:选取距离最小的k个样本
    disList=disList[:k]
    # s4:确定前k个样本所在类别出现的频率,并输出出现频率最高的类别
    labels = {"喜剧片":0,"动作片":0,"爱情片":0}
    #从k个中进行统计哪个类别标签最多
    for s in disList:  
        #取出对应标签
        label = learning_dataset[s[0]] 
        labels[label[len(label)-1]] += 1
    labels =sorted(labels.items(),key=lambda asd: asd[1],reverse=True)

    return labels,labels[0][0]


if __name__ == '__main__':

    learning_dataset=createDataset()
    testData={"老友记": [29, 10, 2, "?片"]}
    dataPoint=list(testData.values())[0][0:3]
    
    k=6
    labels,result=kNN(learning_dataset,dataPoint,k)
    print(labels,result,sep='\n')

在这里插入图片描述

结果为喜剧片!

2. 编写代码,实现对iris数据集的KNN算法分类及预测

要求:

(1)数据集划分为测试集占20%;
(2)n_neighbors=5;
(3)评价模型的准确率;
(4)使用模型预测未知种类的鸢尾花。
(待预测数据:X1=[[1.5 , 3 , 5.8 , 2.2], [6.2 , 2.9 , 4.3 , 1.3]])

iris数据集有150组,每组4个数据。

第一步:引入所需库

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np

第二步:划分测试集占20%

 x_train, x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0)
test_size为0-1的数代表占百分之几
random_state为零随机数确定,每次结果都相同

第三步:n_neighbors=5

 KNeighborsClassifier(n_neighbors=5)

第四步:评价模型的准确率

KNN.fit(x_train, y_train)
# 训练集准确率
train_score = KNN.score(x_train, y_train)
# 测试集准确率
test_score = KNN.score(x_test, y_test)

第五步:使用模型预测未知种类的鸢尾花

#待预测数据:X1=[[1.5 , 3 , 5.8 , 2.2], [6.2 , 2.9 , 4.3 , 1.3]]
 X1 = np.array([[1.5, 3, 5.8, 2.2], [6.2, 2.9, 4.3, 1.3]])
 # 进行预测
 prediction = KNN.predict(X1)
 # 种类名称
 k = iris.get("target_names")[prediction]

完整代码:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
if __name__ == '__main__':
    iris = load_iris()
    data = iris.get("data")
    target = iris.get("target")
    x_train, x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0)
    KNN = KNeighborsClassifier(n_neighbors=5)
    KNN.fit(x_train, y_train)
    train_score = KNN.score(x_train, y_train)
    test_score = KNN.score(x_test, y_test)
    print("模型的准确率:", test_score)
    X1 = np.array([[1.5, 3, 5.8, 2.2], [6.2, 2.9, 4.3, 1.3]])
    prediction = KNN.predict(X1)
    k = iris.get("target_names")[prediction]
    print("第一朵花的种类为:", k[0])
    print("第二朵花的种类为:", k[1])

结果:
在这里插入图片描述

目录
相关文章
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
11天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
25天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
27天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。

热门文章

最新文章

推荐镜像

更多