使用Databricks+Mlflow进行机器学习模型的训练和部署【Databricks 数据洞察公开课】

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 介绍如何使用Databricks和MLflow搭建机器学习生命周期管理平台,实现从数据准备、模型训练、参数和性能指标追踪、以及模型部署的全流程。

作者:李锦桂   阿里云开源大数据平台开发工程师


ML工作流的痛点

1.png

机器学习工作流中存在诸多痛点:


  • 首先,很难对机器学习的实验进行追踪。机器学习算法中有大量可配置参数,在做机器学习实验时,很难追踪到哪些参数、哪个版本的代码以及哪个版本的数据会产生特定的结果。
  • 其次,机器学习实验的结果难以复现。没有标准的方式来打包环境,即使是相同的代码、相同的参数以及相同的数据,也很难复现实验结果。因为实验结果还取决于采用的代码库。
  • 最后,没有标准的方式管理模型的生命周期。算法团队通常会创建大量模型,而这些模型需要中央平台进行管理,特别是模型的版本所处阶段和注释等元数据信息,以及版本的模型是由哪些代码、哪些数据、哪些参数产生,模型的性能指标如何。也没有统一的方式来部署这些模型。


MIflow 就是为了解决机器学习工作流中的上述痛点问题而生。它可以通过简单的 API 实现实验参数追踪、环境打包、模型管理以及模型部署整个流程。


MIflow的第一个核心功能:MIflow Tracking

2.png

它可以追踪基于学习的实验参数、模型的性能指标以及模型的各种文件。在做机器学习时实验时,通常需要记录一些参数配置以及模型的性能指标,而MIflow可以帮助用户免去手动记录的操作。它不仅能记录参数,还能记录任意文件,包括模型、图片、源码等。


从上图左侧代码可以看到,使用MIflow start_run可以开启一次实验;使用 log_param 可以记录模型的参数配置;使用log_metric 可以记录下模型的性能指标,包括标量的性能指标和向量的性能指标;使用 log_model 可以记录下训练好的模型;使用 log_artifact 可以记录下任何想要记录的文件,比如上图中记录下的就是源码。


MIflow的第二个核心功能:MIflow Project

3.png

它会基于代码规约来打包训练代码,并指定执行环境、执行入口以及参数等信息,以便复现实验结果。而且这种规范的打包方式能够更方便代码的共享以及平台的迁移。


如上图,miflow-training 项目里包含两个很重要的文件,分别是content.yaml MLprojectcontent.yaml 文件中指定了 project 的运行环境,包含它所有依赖的代码库以及这些代码库的版本;MLproject 里指定了运行的环境,此处为conda.yaml,指定了运行的入口,即如何将 project运行起来,入口信息里面包含了相应的运行参数,此处为 alpha l1_ratio 两个参数。


除此之外,MIflow还提供了命令行工具,使得用户能够方便地运行MIflow project 比如打包好project 并将其上传到 git 仓库里了,用户只需要通过mIflow run 指令即可执行project 通过-P 传入 alpha 参数。


MIflow 的第三个核心功能:MIflow Models

4.png

它支持以统一的方式打包记录和部署多种算法框架模型。训练完模型后,可以使用MIflow log_model将模型记录下来,MIflow 会自动将模型进行存储(可存储到本地或 OSS 上),而后即可在 MIflow WebUI上查看模型与代码版本、参数和metric 之间的关系,以及模型的存储路径。


此外,MIflow 提供了 API 用于部署模型。使用mIflow models serve 部署模型后,即可使用rest API 调用模型,得到预测的结果。


MIflow 的第四个核心功能:MIflow Registry

5.png

MIflow 不但能够存储模型,还提供了WebUI 以管理模型。WebUI 界面上展示了模型的版本和所处的阶段,模型的详情页显示了模型的描述、标签以及schema。其中模型的标签可以用于检索和标记模型,模型的schema 用于表示模型输入和输出的格式。此外MIflow还建立了模型以及运行环境、代码和参数之间的关系,即模型的血缘。


MIflow 的四个核心功能很好地解决了机器学习工作流中的痛点,总结起来可以分为三个方面:

  1. MIflow Tracking 解决了机器学习实验难以追踪的问题。
  2. MIflow Project解决了机器学习工作流中没有标准的方式来打包环境导致实验结果难以复现的问题。
  3. MIflow Models Model Registry 解决了没有标准的方式来管理模型生命周期的问题。


Demo演示

接下来介绍如何使用MIflow DDI 搭建机器学习平台以管理机器学习的生命周期。

6.png

在架构图中可以看到,主要的组件有 DDI 集群、OSS ECS DDI 集群负责做一些机器学习的训练,需要启动一台 ECS 来搭建MIflow tracking server 以提供 UI 界面。此外还需要在 ECS 上安装 MySQL 以存储训练参数、性能和标签等元数据。OSS 用于存储训练的数据以及模型源码等。


部署要点请观看演示视频

https://developer.aliyun.com/live/248988



产品技术咨询

https://survey.aliyun.com/apps/zhiliao/VArMPrZOR  

加入技术交流群

image.png

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
1月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
103 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
1月前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
150 88
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
机器学习/深度学习 数据采集 算法
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
206 36
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
276 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
62 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
1月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
97 20
|
1天前
|
机器学习/深度学习 数据挖掘 定位技术
多元线性回归:机器学习中的经典模型探讨
多元线性回归是统计学和机器学习中广泛应用的回归分析方法,通过分析多个自变量与因变量之间的关系,帮助理解和预测数据行为。本文深入探讨其理论背景、数学原理、模型构建及实际应用,涵盖房价预测、销售预测和医疗研究等领域。文章还讨论了多重共线性、过拟合等挑战,并展望了未来发展方向,如模型压缩与高效推理、跨模态学习和自监督学习。通过理解这些内容,读者可以更好地运用多元线性回归解决实际问题。
|
1月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
85 6

热门文章

最新文章