大数据组件-Hadoop全分布式部署

本文涉及的产品
云防火墙,500元 1000GB
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据组件-Hadoop全分布式部署

 image.gif编辑

👨🏻‍🎓博主介绍:大家好,我是芝士味的椒盐,一名在校大学生,热爱分享知识,很高兴在这里认识大家🌟

🌈擅长领域:Java、大数据、运维、电子

🙏🏻如果本文章各位小伙伴们有帮助的话,🍭关注+👍🏻点赞+🗣评论+📦收藏,相应的有空了我也会回访,互助!!!

🤝另本人水平有限,旨在创作简单易懂的文章,在文章描述时如有错,恳请各位大佬指正,在此感谢!!!

 


    • 集群规划

    image.gif编辑

      • 检查三台机器之间是否可以ping通这里的三台主机ip分别如下:
      #hadoop1
      192.168.123.75
      #hadoop2 
      192.168.123.76
      #hadoop3
      192.168.123.77
      • image.gif
      • 在/etc/sudoers中设置hadoop的权限(三台)
      root   ALL=(ALL)      ALL
      hadoop ALL=(ALL)     NOPASSWD:ALL
      • image.gif
      • 修改分别修改三台机的network和hostname的名字为:
        192.168.123.75→master
        192.168.123.76→slave1
        192.168.123.77→slave2
      • 查看并永久关闭防火墙
      #查看防火墙状态
      systemctl status firewalld.service
      #关闭防火墙
      systemctl stop firewalld.service
      #永久关闭防火墙
      systemctl disable firewalld.server
      • image.gif
      • 开启SSH免密登录
        • master:
        #生产密钥对
        ssh-keygen -t rsa
        #三连击回车
        ssh-copy-id master
        #将master的公钥传到远程主机上
        scp -r /home/hadoop/.ssh/authorized_keys slave1:/home/hadoop/.ssh/authorized_keys 
        scp -r /home/hadoop/.ssh/authorized_keys slave2:/home/hadoop/.ssh/authorized_keys
        • image.gif
        • slave1:
        #生产密钥对
        ssh-keygen -t rsa
        #三连击回车
        ssh-copy-id master
        • image.gif
        • slave2:
        #生产密钥对
        ssh-keygen -t rsa
        #三连击回车
        ssh-copy-id master
        • image.gif
        • 验证登录其他节点是否无需密码,无需密码说明成功
        ssh slave1
        • image.gif
          • 使用xftp上传jdk-8u144-linux-x64.tar.gzhadoop-2.6.0.tar.gz 到/usr/local/src/目录下
          • 解压文件,并且重命名
          tar -zxvf jdk-8u144-linux-x64.tar.gz
          tar -zxvf hadoop-2.6.0.tar.gz
          • image.gif
          mv jdk1.8.0-bin jdk8
          mv hadoop2.6.0-bin hadoop
          • image.gif
          • 在~/.bash_profile配置环境变量
          export JAVA_HOME=/usr/local/src/jdk8
          export PATH=$PATH:$JAVA_HOME/bin
          export HADOOP_HOME=/usr/local/src/hadoop
          export PATH=$PATH:$HADOOP_HOME/sbin
          • image.gif
          #使环境变量生效
          source ~/.bash_profile
          • image.gif
            • 测试jdk是否正常
            java -version
            • image.gif
              • 在/usr/local/src/hadoop/etc/hadoop/下做以下配置
                • 配置slaves
                #对应每台的host映射
                master
                slave1
                slave2
                export JAVA_HOME=/use/local/src/jdk8
                • image.gif
                • 配置core-site.xml
                <configuration>
                        <property>
                                  <name>fs.defaultFS</name>
                                  <value>hdfs://master:9000</value>
                        </property>
                        <property>
                                  <name>hadoop.tmp.dir</name>
                                  <value>/usr/local/src/hadoop/data/tmp</value>
                        </property>
                </configuartion>
                • image.gif
                • 配置hdfs-site.xml
                <configuration>
                        <property>
                                  <name>dfs.replicaiotn</name>
                                  <value>3</value>
                        </property>
                        <property>
                                  <name>dfs.namenode.secondary.http-address</name>
                                  <value>slave2:50090</value>
                        </property>
                </configuartion>
                • image.gif
                • 配置yarn-site.xml
                <configuration>
                        <property>
                                  <name>yarn.nodemanager.aux-services</name>
                                  <value>mapreduce_shuffle</value>
                        </property>
                        <property>
                                  <name>yarn.resourcemanager.hostname</name>
                                  <value>slave1</value>
                        </property>
                </configuartion>
                • image.gif
                • 配置mapred-site.xml
                <configuration>
                        <property>
                                  <name>mapreduce.framework.name</name>
                                  <value>yarn</value>
                        </property>
                </configuartion>
                • image.gif
                  • 分发配置文件及软件
                    • 分发环境变量
                    #目前master位于~/目录下
                    scp -r ~/.bash_profiel slave1:$PWD
                    scp -r ~/.bash_profiel slave2:$PWD
                    • image.gif
                      • 别忘了到slave1、slave2上source一把
                        • 分发jdk
                        #当前master位于/usr/local/src/目录下
                        scp -r ./jdk8 slave1:$PWD
                        scp -r ./jdk8 slave2:$PWD
                        • image.gif
                        • 分发hadoop
                        #当前master为于/usr/local/src/目录下
                        scp -r ./hadoop slave1:$PWD
                        scp -r ./hadoop slave2:$PWD
                        • image.gif
                          • 格式化hdfs磁盘
                          #在集群的主节点上进行格式化这里为master,格式化status应该为0,不为0需要根据info进行修改
                          hdfs namenode -format
                          • image.gif
                          • 启动hdfs和yarn
                          #master节点上启动
                          start-dfs.sh
                          #在有resourcemanager所在的机器上使用
                          start-yarn.sh
                          • image.gif
                            • 启动之后可以通过http://master:9000进行网页访问,可以看到集群信息
                              相关实践学习
                              基于MaxCompute的热门话题分析
                              Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
                              相关文章
                              |
                              7月前
                              |
                              存储 分布式计算 Hadoop
                              从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
                              从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
                              308 79
                              |
                              5月前
                              |
                              NoSQL Java Redis
                              分布式锁—6.Redisson的同步器组件
                              Redisson提供了多种分布式同步工具,包括分布式锁、Semaphore和CountDownLatch。分布式锁包括可重入锁、公平锁、联锁、红锁和读写锁,适用于不同的并发控制场景。Semaphore允许多个线程同时获取锁,适用于资源池管理。CountDownLatch则用于线程间的同步,确保一组线程完成操作后再继续执行。Redisson通过Redis实现这些同步机制,提供了高可用性和高性能的分布式同步解决方案。源码剖析部分详细介绍了这些组件的初始化和操作流程,展示了Redisson如何利用Redis命令和
                              |
                              9月前
                              |
                              数据采集 人工智能 分布式计算
                              MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
                              阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
                              404 5
                              MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
                              |
                              9月前
                              |
                              人工智能 分布式计算 大数据
                              MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
                              MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
                              406 8
                              |
                              10月前
                              |
                              存储 分布式计算 大数据
                              Flume+Hadoop:打造你的大数据处理流水线
                              本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
                              437 4
                              |
                              11月前
                              |
                              机器学习/深度学习 分布式计算 算法
                              【大数据分析&机器学习】分布式机器学习
                              本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
                              1298 6
                              |
                              11月前
                              |
                              存储 分布式计算 Hadoop
                              数据湖技术:Hadoop与Spark在大数据处理中的协同作用
                              【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
                              476 2
                              |
                              10月前
                              |
                              SQL 分布式计算 算法
                              分布式是大数据处理的万能药?
                              分布式技术在大数据处理中广泛应用,通过将任务拆分至多个节点执行,显著提升性能。然而,它并非万能药,适用于易于拆分的任务,特别是OLTP场景。对于复杂计算如OLAP或批处理任务,分布式可能因数据交换延迟、非线性扩展等问题而表现不佳。因此,应先优化单机性能,必要时再考虑分布式。SPL等工具通过高效算法提升单机性能,减少对分布式依赖。
                              |
                              2月前
                              |
                              存储 负载均衡 NoSQL
                              【赵渝强老师】Redis Cluster分布式集群
                              Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
                              219 2
                              |
                              2月前
                              |
                              存储 缓存 NoSQL
                              【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
                              本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
                              139 6

                              热门文章

                              最新文章