JavaScript 数据结构与算法之美 - 十大经典排序算法汇总(下)

简介: JavaScript 数据结构与算法之美 - 十大经典排序算法汇总(下)

3.10 基数排序(Radix Sort)


思想


基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。


例子


假设我们有 10 万个手机号码,希望将这 10 万个手机号码从小到大排序,你有什么比较快速的排序方法呢 ?


这个问题里有这样的规律:假设要比较两个手机号码 a,b 的大小,如果在前面几位中,a 手机号码已经比 b 手机号码大了,那后面的几位就不用看了。所以是基于来比较的。


桶排序、计数排序能派上用场吗 ?手机号码有 11 位,范围太大,显然不适合用这两种排序算法。针对这个排序问题,有没有时间复杂度是 O(n) 的算法呢 ? 有,就是基数排序。


使用条件


  • 要求数据可以分割独立的来比较;
  • 位之间由递进关系,如果 a 数据的高位比 b 数据大,那么剩下的地位就不用比较了;
  • 每一位的数据范围不能太大,要可以用线性排序,否则基数排序的时间复杂度无法做到 O(n)。


方案


按照优先从高位或低位来排序有两种实现方案:


  • MSD:由高位为基底,先按 k1 排序分组,同一组中记录, 关键码 k1 相等,再对各组按 k2 排序分成子组, 之后,对后面的关键码继续这样的排序分组,直到按最次位关键码 kd 对各子组排序后,再将各组连接起来,便得到一个有序序列。MSD 方式适用于位数多的序列。
  • LSD:由低位为基底,先从 kd 开始排序,再对 kd - 1 进行排序,依次重复,直到对 k1 排序后便得到一个有序序列。LSD 方式适用于位数少的序列。


实现


/**
    * name: 基数排序
    * @param  array 待排序数组
    * @param  max 最大位数
    */
const radixSort = (array, max) => {
    console.time('计数排序耗时');
    const buckets = [];
    let unit = 10,
        base = 1;
    for (let i = 0; i < max; i++, base *= 10, unit *= 10) {
        for (let j = 0; j < array.length; j++) {
            let index = ~~((array[j] % unit) / base); //依次过滤出个位,十位等等数字
            if (buckets[index] == null) {
                buckets[index] = []; //初始化桶
            }
            buckets[index].push(array[j]); //往不同桶里添加数据
        }
        let pos = 0,
            value;
        for (let j = 0, length = buckets.length; j < length; j++) {
            if (buckets[j] != null) {
                while ((value = buckets[j].shift()) != null) {
                    array[pos++] = value; //将不同桶里数据挨个捞出来,为下一轮高位排序做准备,由于靠近桶底的元素排名靠前,因此从桶底先捞
                }
            }
        }
    }
    console.timeEnd('计数排序耗时');
    return array;
};


测试


const array = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log('原始array:', array);
const newArr = radixSort(array, 2);
console.log('newArr:', newArr);
// 原始 array:  [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48]
// 堆排序耗时:   0.064208984375ms
// newArr:       [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]


分析


  • 第一,基数排序是原地排序算法吗 ?


因为计数排序的空间复杂度为 O(n + k),所以不是原地排序算法。


  • 第二,基数排序是稳定的排序算法吗 ?


基数排序不改变相同元素之间的相对顺序,因此它是稳定的排序算法。


  • 第三,基数排序的时间复杂度是多少 ?


最佳情况:T(n) = O(n * k)

最差情况:T(n) = O(n * k)

平均情况:T(n) = O(n * k)

其中,k 是待排序列最大值。


动画


LSD 基数排序动图演示:


微信图片_20220513221046.gif


4. 复杂度对比


十大经典排序算法的 时间复杂度与空间复杂度 比较。


名称 平均 最好 最坏 空间 稳定性 排序方式
冒泡排序 O(n2) O(n) O(n2) O(1) Yes In-place
插入排序 O(n2) O(n) O(n2) O(1) Yes In-place
选择排序 O(n2) O(n2) O(n2) O(1) No In-place
归并排序 O(n log n) O(n log n) O(n log n) O(n) Yes Out-place
快速排序 O(n log n) O(n log n) O(n2) O(logn) No In-place
希尔排序 O(n log n) O(n log2 n) O(n log2 n) O(1) No In-place
堆排序 O(n log n) O(n log n) O(n log n) O(1) No In-place
桶排序 O(n + k) O(n + k) O(n2) O(n + k) Yes Out-place
计数排序 O(n + k) O(n + k) O(n + k) O(k) Yes Out-place
基数排序 O(n * k) O(n * k) O(n * k) O(n + k) Yes Out-place


名词解释:


  • n:数据规模;
  • k:桶的个数;
  • In-place: 占用常数内存,不占用额外内存;
  • Out-place: 占用额外内存。


5. 算法可视化工具



算法可视化工具 algorithm-visualizer 是一个交互式的在线平台,可以从代码中可视化算法,还可以看到代码执行的过程。旨在通过交互式可视化的执行来揭示算法背后的机制。


效果如下图:


微信图片_20220513221115.gif



效果如下图:


微信图片_20220513221127.gif



效果如下图:


微信图片_20220513221140.gif



变量和操作的可视化表示增强了控制流和实际源代码。您可以快速前进和后退执行,以密切观察算法的工作方式。


效果如下图:


微信图片_20220513221153.gif

相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
74 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
1月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
27 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
24天前
|
数据采集 存储 JavaScript
如何使用Puppeteer和Node.js爬取大学招生数据:入门指南
本文介绍了如何使用Puppeteer和Node.js爬取大学招生数据,并通过代理IP提升爬取的稳定性和效率。Puppeteer作为一个强大的Node.js库,能够模拟真实浏览器访问,支持JavaScript渲染,适合复杂的爬取任务。文章详细讲解了安装Puppeteer、配置代理IP、实现爬虫代码的步骤,并提供了代码示例。此外,还给出了注意事项和优化建议,帮助读者高效地抓取和分析招生数据。
如何使用Puppeteer和Node.js爬取大学招生数据:入门指南
|
1月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
35 4
|
1月前
|
前端开发 JavaScript
JS-数据筛选
JS-数据筛选
34 7
|
1月前
|
JavaScript 数据安全/隐私保护
2024了,你会使用原生js批量获取表单数据吗
2024了,你会使用原生js批量获取表单数据吗
50 4
|
1月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
21 0
数据结构与算法学习十四:常用排序算法总结和对比
|
1月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
33 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
1月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
1月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
22 0
下一篇
无影云桌面