Java并发系列之7 深入理解线程池ThreadPoolExecutor

简介: Java并发系列之7 深入理解线程池ThreadPoolExecutor

1. 初识线程池


线程池解决了如下两个问题


当执行大量的异步任务时,线程池可以减少每个任务的调用切换开销从而提高应用性能

对执行的线程,和要被执行的任务,提供了管理的方法


此外每个线程池还维护了一些基本统计信息,比如已完成任务的数量


2. ThreadPoolExecutor的简单使用


我们创建一个线程池对象ThreadPoolExecutor,让线程池执行10个打印任务,输出当前任务名称以及线程的名称

public class ThreadPoolExecutorTest {
    public static void main(String[] args) {
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(2,5,0L, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(10));
        for(int i=0;i<10;i++){
            final int num = i;
            threadPoolExecutor.execute(new Runnable() {
                @Override
                public void run() {
                    try {
                        TimeUnit.MILLISECONDS.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("execute task "+num+" in "+Thread.currentThread().getName());
                }
            });
        }
    }
}

代码还是蛮简单的。首先创建一个ThreadPoolExecutor对象,然后调用ThreadPoolExecutor.execute(Runnable runnable)方法。输出结果如下。我们可以观察到线程池启动了两个线程pool-1-thread-1和pool-1-thread-2来执行任务。那么这里提两个问题


该线程池最多能启动5个线程,为什么线程池只启动了2个线程来执行任务?

如果把for循环次数由10改成100,线程池会启动几个线程呢?


如果你还不是很有把握回答这两个问题那么请接着看下文分析吧。

execute task 0 in pool-1-thread-1
execute task 1 in pool-1-thread-2
execute task 2 in pool-1-thread-1
execute task 3 in pool-1-thread-2
execute task 5 in pool-1-thread-2
execute task 4 in pool-1-thread-1
execute task 6 in pool-1-thread-2
execute task 7 in pool-1-thread-1
execute task 8 in pool-1-thread-2
execute task 9 in pool-1-thread-1

3. ThreadPoolExecutor的成员变量和构造函数

 public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)

线程池中的线程被逻辑分为两类(核心线程和非核心线程)。核心线程如果被启动了,一般情况下是会一直活着的(除非allowCoreThreadTimeOut被设置成true),非核心线程在keepAlivTime时间范围内,如果没有任务执行会被系统中断回收掉。


那么核心线程是在什么时候被创建并启动的呢?非核心线程又是在什么时候被创建并启动的呢?(稍安勿躁,后面会给出答案)


workQueue是指任务的集合。我们可以把ThreadPoolExecutor简单的认为它只有两个比较重要的属性 线程的集合和任务的集合。

private final HashSet<Worker> workers = new HashSet<>();
private final BlockingQueue<Runnable> workQueue;

workers对象正是线程的集合,后面我们会对Worker对象做一个详细的讲解

workQueue是一个阻塞队列。阻塞队列的概念就是如果队列满了那么put操作会阻塞,如果队列为空那么take操作会阻塞。

线程池的工作原理我们可以简单地认为是往workQueue里面put任务,系统会合理的调度workers中的线程来处理workQueue中的任务。


下面我们来对构造函数的各个参数做一个详细的介绍


corePoolSize:核心线程个数,当新的任务通过execute(java.lang.Runnable)方法提交到线程池中,如果线程池的线程个数小于corePoolSize设定的值时,不管线程池中的线程是否空闲,都会新建线程来处理该任务

maximumPoolSize:线程池最多允许的线程数。如果线程池中的线程数量大于等于corePoolSize而且小于等于maximumPoolSize,如果此时workQueue已满,则会创建新的线程来处理任务(如果线程数等于maximumPoolSize则会执行相应的拒绝策略),反之如果workQueue未满,则将该任务put到workQueue中。

keepAliveTime:允许线程空闲的时间,如果空闲时间超过,而且线程池中的线程数比corePoolSize数量多,则会中断和回收空闲线程

unit:keepAliveTime的时间单位,秒或者毫秒等

workQueue:工作队列可以用来交付和保存提交到线程池中的工作任务,它和corePoolSize maximumPoolSize相互作用


处理任务的流程如下


如果线程池中的线程数量小于corePoolSize,线程池将新建新的线程处理该任务,而不是将任务入队列

如果线程池中的线程数量大于等于corePoolSize,线程池将优先选择将任务入队列

如果入队列失败(队列已满),将创建新的线程处理任务,除非线程超过了maximumPoolSize,任务将被拒绝


三种不同的入队策略


直接交付,使用 SynchronousQueue直接交付任务,而不是把任务保存在队列中。

无界的队列,比如LinkedBlockingQueue,用无界队列构建的线程池,线程数永远不会超过corePoolSize

有界的队列,比如ArrayBlockingQueue,这种情况比较复杂,线程池同时受corePoolSize,maximumPoolSize,workQueue大小约束

threadFactory:主要是给线程池中的线程命名,以便查找问题

handler:线程池无法处理任务时的拒绝策略


4. execute(java.lang.Runnable)方法

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        //1 如果线程池中的线程数小于corePoolSize,新建线程处理command
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        //2 如果线程池中的线程数量大于等于corePoolSize,将任务入队列
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        //3 如果任务入队列失败,创建非核心线程处理任务
        else if (!addWorker(command, false))
            reject(command);//4.如果创建非核心线程失败,拒绝该任务
    }

如果线程池中的线程数小于corePoolSize,新建线程处理command

如果线程池中的线程数量大于等于corePoolSize,将任务入队列

如果任务入队列失败,创建非核心线程处理任务

如果创建非核心线程失败,拒绝该任务


5.Worker类(工作线程类)

private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;
        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;
        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }
        /** Delegates main run loop to outer runWorker. */
        public void run() {
            runWorker(this);
        }
        final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                    (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                      beforeExecute(wt, task);
                     Throwable thrown = null;
                     try {
                         task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                        thrown = x; throw x;
                        } catch (Throwable x) {
                          thrown = x; throw new Error(x);
                        } finally {
                        afterExecute(task, thrown);
                    }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                 }
                completedAbruptly = false;
            } finally {
                processWorkerExit(w, completedAbruptly);
            }
    }
    }

Worker实现了Runnable接口,构造函数中this.thread = getThreadFactory().newThread(this),启动线程将执行run方法


Worker是AbstractQueuedSynchronizer的子类,说明了Worker本身是一把锁。如何判断工作线程是否空闲?就是通过work.tryLock()来判断不信可以看下interruptIdleWorkers(boolean onlyOne)方法,该方法的功能是中断空闲的工作线程

private void interruptIdleWorkers(boolean onlyOne) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers) {
                Thread t = w.thread;
                //如果w.tryLock()返回true表示该工作线程处于空闲状态
                if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        w.unlock();
                    }
                }
                if (onlyOne)
                    break;
            }
        } finally {
            mainLock.unlock();
        }
    }

我们来看下w.lock()调用的地方。在runWorker(Worker worker)方法中,在获取到任务去处理时,会调用w.lock()

final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
        //从任务队列中获取任务,可能会阻塞,因为BlockingQueue是阻塞队列
            while (task != null || (task = getTask()) != null) {
                //如果获取到了任务去执行,上锁
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

6. 工作线程什么时候启动的呢


在讲execute(Runnable runnable)的方法的时候,创建工作线程是通过addWorker(Runnable firstTask, boolean core)方法实现的

private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);
            //如果线程池被shutDown,直接返回
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;
            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    //如果线程数超过了限制直接返回false
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }
        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            //创建工作线程
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    //启动工作线程
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
  1. 判断线程池是否满足条件,如果不满足返回false
  2. 创建Worker对象,并启动工作线程


7. keepAliveTime功能是如何实现的


如何实现在keepAliveTime时间内空闲,中断线程的呢,答案在getTask()中

private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);
            //1.如果调用了shutDownNow返回null
            //2.如果调用了shutDown而且workQueue没有任务返回null
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }
            int wc = workerCountOf(c);
            //如果允许杀死空闲的核心线程,或者线程数超过corePoolSize
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }
            try {
            //如果指定时间内获取不到任务,返回null,线程将会结束
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

1.判断是否需要杀死空闲的线程


允许杀死核心线程 返回true


不允许杀死核心线程 判断线程数是否大于corePoolSize


2.通过workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS)方法获取任务,如果超时,返回null


3.runWorker中getTask返回null,跳出循环,调用processWorkerExit(w, completedAbruptly)

8. shutdown和shutdownNow的区别


shutdown方法调用后,不会处理新的任务,但是会处理已经进入队列的任务


shutdownNow方法调用后,不会处理新的任务,而且不会处理已经进入队列的任务,而且会停止所有的工作线程


相关文章
|
19天前
|
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
81 17
|
30天前
|
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
Java 多线程 面试题
Java 多线程 相关基础面试题
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
60 3
Java并发编程:深入理解线程池的原理与实践
【4月更文挑战第6天】本文将深入探讨Java并发编程中的重要概念——线程池。我们将从线程池的基本原理入手,逐步解析其工作过程,以及如何在实际开发中合理使用线程池以提高程序性能。同时,我们还将关注线程池的一些高级特性,如自定义线程工厂、拒绝策略等,以帮助读者更好地掌握线程池的使用技巧。
一天十道Java面试题----第四天(线程池复用的原理------>spring事务的实现方式原理以及隔离级别)
这篇文章是关于Java面试题的笔记,涵盖了线程池复用原理、Spring框架基础、AOP和IOC概念、Bean生命周期和作用域、单例Bean的线程安全性、Spring中使用的设计模式、以及Spring事务的实现方式和隔离级别等知识点。
JAVA并发编程系列(11)线程池底层原理架构剖析
本文详细解析了Java线程池的核心参数及其意义,包括核心线程数量(corePoolSize)、最大线程数量(maximumPoolSize)、线程空闲时间(keepAliveTime)、任务存储队列(workQueue)、线程工厂(threadFactory)及拒绝策略(handler)。此外,还介绍了四种常见的线程池:可缓存线程池(newCachedThreadPool)、定时调度线程池(newScheduledThreadPool)、单线程池(newSingleThreadExecutor)及固定长度线程池(newFixedThreadPool)。
深入理解Java并发编程:线程池的原理与实践
【5月更文挑战第85天】 在现代Java应用开发中,高效地处理并发任务是提升性能和响应能力的关键。线程池作为一种管理线程的机制,其合理使用能够显著减少资源消耗并优化系统吞吐量。本文将详细探讨线程池的核心原理,包括其内部工作机制、优势以及如何在Java中正确实现和使用线程池。通过理论分析和实例演示,我们将揭示线程池对提升Java应用性能的重要性,并给出实践中的最佳策略。