Android启动优化之精确测量启动各个阶段的耗时

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Android启动优化之精确测量启动各个阶段的耗时

1. 直观地观察应用启动时长



我们可以通过观察logcat日志查看Android应用启动耗时,过滤关键字"Displayed"

ActivityTaskManager: Displayed com.peter.viewgrouptutorial/.activity.DashboardActivity: +797ms


启动时长(在这个例子中797ms)表示从启动App到系统认为App启动完成所花费的时间。


2. 启动时间包含哪几个阶段



从用户点击桌面图标,到Activity启动并将界面第一帧绘制出来大概会经过以下几个阶段。


  1. system_server展示starting window
  2. Zygote fork Android 进程
  3. ActivityThread handleBindApplication(这个阶段又细分为)
  • 加载程序代码和资源
  • 初始化ContentProvider
  • 执行Application.onCreate()
  1. 启动Activity(执行 onCreate、onStart、onResume等方法)
  2. ViewRootImpl执行doFrame()绘制View,计算出首帧绘制时长。


流程图如下:


image.png

我们可以看出:阶段1和2都是由系统控制的。App开发者对这两个阶段的耗时能做的优化甚微。


3. 系统是如何测量启动时长的?



本文源码基于android-30

我们在cs.android.com源码阅读网站上全局搜索


image.png


  1. ActivityMetricsLogger.logAppDisplayed()方法中发现了打印日志语句
private void logAppDisplayed(
  TransitionInfoSnapshot info
) {
    if (info.type != TYPE_TRANSITION_WARM_LAUNCH && info.type != TYPE_TRANSITION_COLD_LAUNCH) {
        return;
    }
    EventLog.writeEvent(WM_ACTIVITY_LAUNCH_TIME,
            info.userId, info.activityRecordIdHashCode, info.launchedActivityShortComponentName,
            info.windowsDrawnDelayMs);
    StringBuilder sb = mStringBuilder;
    sb.setLength(0);
    sb.append("Displayed ");
    sb.append(info.launchedActivityShortComponentName);
    sb.append(": ");
    TimeUtils.formatDuration(info.windowsDrawnDelayMs, sb);
    Log.i(TAG, sb.toString());
}


  1. TransitionInfoSnapshot.windowsDrawnDelayMs是启动的时长。它在以下方法中被赋值:
  • ActivityMetricsLogger.notifyWindowsDrawn()
  • ➡️ TransitionInfo.calculateDelay()
//ActivityMetricsLogger.java
TransitionInfoSnapshot notifyWindowsDrawn(
  ActivityRecord r, 
  long timestampNs
) {  
  TransitionInfo info = getActiveTransitionInfo(r);
  info.mWindowsDrawnDelayMs = info.calculateDelay(timestampNs);
  return new TransitionInfoSnapshot(info);
}
private static final class TransitionInfo {
 int calculateDelay(long timestampNs) {
   long delayNanos = timestampNs - mTransitionStartTimeNs;
   return (int) TimeUnit.NANOSECONDS.toMillis(delayNanos);
 }
}
  1. timestampNs表示启动结束时间,mTransitionStartTimeNs表示启动开始时间。它们分别是在哪赋值的呢?


mTransitionStartTimeNs启动开始时间在notifyActivityLaunching方法中被赋值。调用堆栈如下:


  • ActivityManagerService.startActivity()
  • ➡️ActivityManagerService.startActivityAsUser()
  • ➡️ActivityStarter.execute()
  • ➡️ActivityMetricsLogger.notifyActivityLaunching()


image.png


ActivityMetricsLogger.notifyActivityLaunching(...)


//ActivityMetricsLogger.java
private LaunchingState notifyActivityLaunching(
  Intent intent,
  ActivityRecord caller,
  int callingUid
) {
  ...
  long transitionStartNs = SystemClock.elapsedRealtimeNanos();
  LaunchingState launchingState = new LaunchingState();
  launchingState.mCurrentTransitionStartTimeNs = transitionStartNs;
  ...
  return launchingState; 
}


启动时间记录到LaunchingState.mCurrentTransitionStartTimeNs

ActivityStarter.execute()
//ActivityStarter.java
int execute() {
    try {
        final LaunchingState launchingState;
        synchronized (mService.mGlobalLock) {
            final ActivityRecord caller = ActivityRecord.forTokenLocked(mRequest.resultTo);
            launchingState = mSupervisor.getActivityMetricsLogger().notifyActivityLaunching(
                    mRequest.intent, caller);
        }
        if (mRequest.activityInfo == null) {
            mRequest.resolveActivity(mSupervisor);
        }
        int res;
        synchronized (mService.mGlobalLock) {
            mSupervisor.getActivityMetricsLogger().notifyActivityLaunched(launchingState, res,
                    mLastStartActivityRecord);
            return getExternalResult(mRequest.waitResult == null ? res
                    : waitForResult(res, mLastStartActivityRecord));
        }
    } finally {
        onExecutionComplete();
    }
}


该方法作用如下:


  1. 调用ActivityMetricsLogger().notifyActivityLaunching()生成LaunchingState。将启动时间记录其中
  2. 执行StartActivity逻辑
  3. 调用ActivityMetricsLogger().notifyActivityLaunched()把launchingState和ActivityRecord映射保存起来
ActivityMetricsLogger.notifyActivityLaunched(...)
//ActivityMetricsLogger.java
void notifyActivityLaunched(
    LaunchingState launchingState,
    int resultCode,
    ActivityRecord launchedActivity) {
    ...
    final TransitionInfo newInfo = TransitionInfo.create(launchedActivity, launchingState,
            processRunning, processSwitch, resultCode);
    if (newInfo == null) {
        abort(info, "unrecognized launch");
        return;
    }
    if (DEBUG_METRICS) Slog.i(TAG, "notifyActivityLaunched successful");
    // A new launch sequence has begun. Start tracking it.
    mTransitionInfoList.add(newInfo);
    mLastTransitionInfo.put(launchedActivity, newInfo);
    startLaunchTrace(newInfo);
    if (newInfo.isInterestingToLoggerAndObserver()) {
        launchObserverNotifyActivityLaunched(newInfo);
    } else {
        // As abort for no process switch.
        launchObserverNotifyIntentFailed();
    }
}


该方法将根据LaunchingState和ActivityRecord生成TransitionInfo保存到mTransitionInfoList中。这样就将启动开始时间保存起来了。


ActivityMetricsLogger.notifyWindowsDrawn(...)
//ActivityMetricsLogger.java
TransitionInfoSnapshot notifyWindowsDrawn(
  ActivityRecord r, 
  long timestampNs
) {  
  TransitionInfo info = getActiveTransitionInfo(r);
  info.mWindowsDrawnDelayMs = info.calculateDelay(timestampNs);
  return new TransitionInfoSnapshot(info);
}
//ActivityMetricsLogger.java
private TransitionInfo getActiveTransitionInfo(WindowContainer wc) {
    for (int i = mTransitionInfoList.size() - 1; i >= 0; i--) {
        final TransitionInfo info = mTransitionInfoList.get(i);
        if (info.contains(wc)) {
            return info;
        }
    }
    return null;


notifyWindowsDraw方法正是通过查找mTransitionInfoList中对应的TransitionInfo获取到Activity的启动开始时间。


启动完成调用堆栈如下


  • ActivityRecord.onFirstWindowDrawn()
  • ➡️ActivityRecord.updateReportedVisibilityLocked()
  • ➡️ActivityRecord.onWindowsDrawn()
  • ➡️ActivityMetricsLogger.notifyWindowsDrawn()


image.png

ActivityRecord.updateReportedVisibilityLocked()


//ActivityRecord.java
void updateReportedVisibilityLocked() {
  ...
    boolean nowDrawn = numInteresting > 0 && numDrawn >= numInteresting;
    boolean nowVisible = numInteresting > 0 && numVisible >= numInteresting && isVisible();
    if (nowDrawn != reportedDrawn) {
        onWindowsDrawn(nowDrawn, SystemClock.elapsedRealtimeNanos());
        reportedDrawn = nowDrawn;
    }
  ...
}
void onWindowsDrawn(boolean drawn, long timestampNs) {
    mDrawn = drawn;
    if (!drawn) {
        return;
    }
    final TransitionInfoSnapshot info = mStackSupervisor
            .getActivityMetricsLogger().notifyWindowsDrawn(this, timestampNs);
    ...
}


我们看到在updateReportedVisibilityLocked()方法中把SystemClock.elapsedRealtimeNanos()传递给onWindowsDrawn(nowDrawn, SystemClock.elapsedRealtimeNanos())


4. 调试技巧



通过断点调试记录应用冷启动记录耗时调用栈


  1. 准备一台root的手机(或者非Google Play版本模拟器)
  2. compileSdkVersion、targetSdkVersion与模拟器版本一致(本文30)
  3. notifyActivityLaunching和notifyWindowsDrawn中增加断点
  4. 调试勾选Show all processes选择system_process


image.png

几个重要的时间节点
  1. ActivityManagerService接收到startActivity信号时间,等价于launchingState.mCurrentTransitionStartTimeNs。时间单位纳秒。
  2. 进程Fork的时间,时间单位毫秒。可以通过以下方式获取:
object Processes {
    @JvmStatic
    fun readProcessForkRealtimeMillis(): Long {
        val myPid = android.os.Process.myPid()
        val ticksAtProcessStart = readProcessStartTicks(myPid)
        // Min API 21, use reflection before API 21.
        // See https://stackoverflow.com/a/42195623/703646
        val ticksPerSecond = Os.sysconf(OsConstants._SC_CLK_TCK)
        return ticksAtProcessStart * 1000 / ticksPerSecond
    }
    // Benchmarked (with Jetpack Benchmark) on Pixel 3 running
    // Android 10. Median time: 0.13ms
    fun readProcessStartTicks(pid: Int): Long {
        val path = "/proc/$pid/stat"
        val stat = BufferedReader(FileReader(path)).use { reader ->
            reader.readLine()
        }
        val fields = stat.substringAfter(") ")
            .split(' ')
        return fields[19].toLong()
    }
}


  1. ActivityThread.handleBindApplication时设置的进程启动时间,单位毫秒。Process.getStartElapsedRealtime()


//ActivityThread.java
private void handleBindApplication(AppBindData data) {
    ...
    // Note when this process has started.
    Process.setStartTimes(SystemClock.elapsedRealtime(), SystemClock.uptimeMillis());
    ...
}


  1. 程序代码和资源加载的时间,时间单位毫秒。Application类初始化时的时间handleBindApplication的时间差


class MyApp extends Application {
    static {
          if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.N) {
            long loadApkAndResourceDuration = SystemClock.elapsedRealtime() - Process.getStartElapsedRealtime();
          }
    }
}


  1. ContentProvider初始化时间,时间单位毫秒。 Application.onCreate()Application.attachBaseContext(Context context) 之间的时间差
class MyApp extends Application {
   long mAttachBaseContextTime = 0L;
   long mContentProviderDuration = 0L;
   @Override
    protected void attachBaseContext(Context base) {
        super.attachBaseContext(base);
        mAttachBaseContextTime = SystemClock.elapsedRealtime();
    }
    @Override
    public void onCreate() {
        super.onCreate();
        mContentProviderDuration = SystemClock.elapsedRealtime() - mAttachBaseContextTime;
    }


  1. Application.onCreate()花费时间,时间单位毫秒。很简单方法开始和结束时间差。


  1. 首帧绘制时间,比较复杂,使用到了com.squareup.curtains:curtains:1.0.1代码如下,firstDrawTime就是首帧的绘制时间。从ActivityThread.handleBindApplication()到首帧绘制所花费的时间:
class MyApp extends Application {
    @Override
    public void onCreate() {
        super.onCreate();
        registerActivityLifecycleCallbacks(new ActivityLifecycleCallbacks() {
            @Override
            public void onActivityCreated(Activity activity, Bundle savedInstanceState) {
                Window window = activity.getWindow();
                WindowsKt.onNextDraw(window, () -> {
                    if (firstDraw) return null;
                    firstDraw = true;
                    handler.postAtFrontOfQueue(() -> {
                        if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.N) {
                            long firstDrawTime =  (SystemClock.elapsedRealtime() - Process.getStartElapsedRealtime()));
                        }
                    });
                    return null;
                });
            }
        }
    }
}
调试launchingState.mCurrentTransitionStartTimeNs


由于ActivityMetricsLogger是运行在system_process进程中。我们无法在应用进程中获取到transitionStartTimeNs,我们可以用过Debug打印日志。我们需要将断点设置成non-suspending。如图将Suspend反勾选。选中Evaluate and log,并写入日志语句。

image.png

image.png

image.png


相关实践学习
日志服务之数据清洗与入湖
本教程介绍如何使用日志服务接入NGINX模拟数据,通过数据加工对数据进行清洗并归档至OSS中进行存储。
相关文章
|
12天前
|
Java Android开发
Android面试题经典之Glide取消加载以及线程池优化
Glide通过生命周期管理在`onStop`时暂停请求,`onDestroy`时取消请求,减少资源浪费。在`EngineJob`和`DecodeJob`中使用`cancel`方法标记任务并中断数据获取。当网络请求被取消时,`HttpUrlFetcher`的`cancel`方法设置标志,之后的数据获取会返回`null`,中断加载流程。Glide还使用定制的线程池,如AnimationExecutor、diskCacheExecutor、sourceExecutor和newUnlimitedSourceExecutor,其中某些禁止网络访问,并根据CPU核心数动态调整线程数。
25 2
|
2月前
|
移动开发 安全 Android开发
构建高效Android应用:Kotlin协程的实践与优化策略
【5月更文挑战第30天】 在移动开发领域,性能优化始终是关键议题之一。特别是对于Android开发者来说,如何在保证应用流畅性的同时,提升代码的执行效率,已成为不断探索的主题。近年来,Kotlin语言凭借其简洁、安全和实用的特性,在Android开发中得到了广泛的应用。其中,Kotlin协程作为一种新的并发处理机制,为编写异步、非阻塞性的代码提供了强大工具。本文将深入探讨Kotlin协程在Android开发中的应用实践,以及如何通过协程优化应用性能,帮助开发者构建更高效的Android应用。
|
26天前
|
ARouter IDE 开发工具
Android面试题之App的启动流程和启动速度优化
App启动流程概括: 当用户点击App图标,Launcher通过Binder IPC请求system_server启动Activity。system_server指示Zygote fork新进程,接着App进程向system_server申请启动Activity。经过Binder通信,Activity创建并回调生命周期方法。启动状态分为冷启动、温启动和热启动,其中冷启动耗时最长。优化技巧包括异步初始化、避免主线程I/O、类加载优化和简化布局。
35 3
Android面试题之App的启动流程和启动速度优化
|
12天前
|
算法 Java API
Android性能优化面试题经典之ANR的分析和优化
Android ANR发生于应用无法在限定时间内响应用户输入或完成操作。主要条件包括:输入超时(5秒)、广播超时(前台10秒/后台60秒)、服务超时及ContentProvider超时。常见原因有网络、数据库、文件操作、计算任务、UI渲染、锁等待、ContentProvider和BroadcastReceiver的不当使用。分析ANR可借助logcat和traces.txt。主线程执行生命周期回调、Service、BroadcastReceiver等,避免主线程耗时操作
21 3
|
24天前
|
缓存 JSON 网络协议
Android面试题:App性能优化之电量优化和网络优化
这篇文章讨论了Android应用的电量和网络优化。电量优化涉及Doze和Standby模式,其中应用可能需要通过用户白名单或电池广播来适应限制。Battery Historian和Android Studio的Energy Profile是电量分析工具。建议减少不必要的操作,延迟非关键任务,合并网络请求。网络优化包括HTTPDNS减少DNS解析延迟,Keep-Alive复用连接,HTTP/2实现多路复用,以及使用protobuf和gzip压缩数据。其他策略如使用WebP图像格式,按网络质量提供不同分辨率的图片,以及启用HTTP缓存也是有效手段。
42 9
|
25天前
|
XML 监控 安全
Android App性能优化之卡顿监控和卡顿优化
本文探讨了Android应用的卡顿优化,重点在于布局优化。建议包括将耗时操作移到后台、使用ViewPager2实现懒加载、减少布局嵌套并利用merge标签、使用ViewStub减少资源消耗,以及通过Layout Inspector和GPU过度绘制检测来优化。推荐使用AsyncLayoutInflater异步加载布局,但需注意线程安全和不支持特性。卡顿监控方面,提到了通过Looper、ChoreographerHelper、adb命令及第三方工具如systrace和BlockCanary。总结了Choreographer基于掉帧计算和BlockCanary基于Looper监控的原理。
27 3
|
13天前
|
安全 Java 数据处理
Android多线程编程实践与优化技巧
Android多线程编程实践与优化技巧
|
1月前
|
缓存 编解码 安全
探索Android 12的新特性与优化技巧
【6月更文挑战第7天】本文将深入探讨Android 12带来的创新功能和改进,包括用户界面的更新、隐私保护的加强以及性能的提升。同时,我们还将分享一些实用的优化技巧,帮助用户更好地利用这些新特性,提升手机的使用体验。
|
16天前
|
安全 Java 数据处理
Android多线程编程实践与优化技巧
Android多线程编程实践与优化技巧
|
2月前
|
缓存 Android开发 开发者
安卓系统优化:提升手机性能的秘诀
【5月更文挑战第31天】本文将探讨如何通过一系列简单的步骤和技巧,对安卓系统进行优化,以提升手机的性能。我们将从清理无用文件、管理后台应用、调整系统设置等方面入手,帮助你的安卓设备运行更加流畅。