Java中的GraphQL服务器:第三部分:提高并发性

简介: GraphQL的思想是通过将多个通常不相关的请求批处理到一个网络调用中来减少网络往返的次数。通过一次传送许多信息,大大减少了等待时间。当多个顺序的网络往返可以用一个来代替时,它特别有用。好吧,老实说,每个网络浏览器都会自动为我们完成此操作。例如,当我们打开一个包含多个图像的网站时,浏览器将同时发送每个图像的HTTP请求。

GraphQL的思想是通过将多个通常不相关的请求批处理到一个网络调用中来减少网络往返的次数。通过一次传送许多信息,大大减少了等待时间。当多个顺序的网络往返可以用一个来代替时,它特别有用。好吧,老实说,每个网络浏览器都会自动为我们完成此操作。例如,当我们打开一个包含多个图像的网站时,浏览器将同时发送每个图像的HTTP请求。


或者,确切地说,它将开始不超过与同一主机的一定数量的连接。介于2到8之间,具体取决于浏览器。同样适用于多个AJAX / RESTful调用(请参阅fetch()API),默认情况下是并发的,开发人员方面无需进行任何额外的工作。实际上,这就是_A_在AJAX 1中的含义。


那么,GraphQL有什么优势?


如果Web浏览器已经可以同时对多个数据发出并发请求,为什么还要麻烦GraphQL?有一些优点:

  • 如果您需要进行的并发连接数量超出允许的数量(最多2-8个,请参见上文),浏览器无论如何都会限制您的工作,从而使一些请求排队
  • GraphQL通过仅返回您明确要求的属性和关系来防止过度获取和N + 1问题,不多,也不少
  • 只有一个批处理请求。并发发生在服务器端。好吧,不是真的...


GraphQL服务器默认情况下不使用并发


默认情况下,在Java的GraphQL服务器实现中, 最后一句_不正确_。记住,我们为每个非平凡的属性和关系提供了很多解析器。提醒一下,这是我们的解析器的外观:

@Component
class PlayerResolver implements GraphQLResolver<Player> {
    Billing billing(Player player) //...
    String name(Player player) //...
    int points(Player player) //...
    ImmutableList<Item> inventory(Player player) //...
}

这些方法中的每一个仅在需要时才被调用,并且每个都是潜在的重量级。不幸的是,默认情况下,服务器端的GraphQL引擎会顺序调用解析器方法。因此,与RESTful API(!)相比,总体延迟要差得多。Restful API将利用浏览器的内置并发性。为了显示这种行为的糟糕程度,我设置了Zipkin并跟踪了每个解析器:

}1O~(I)]W6D8Z(6{`XF50P4.png

请注意,完全不相关的解析程序彼此之间是如何等待的。幸运的是,此性能瓶颈很容易解决。原来GraphQL引擎了解CompletableFuture



异步解析器

看看经过改进的解析器API:

@Component
class PlayerResolver implements GraphQLResolver<Player> {
    CompletableFuture<Billing> billing(Player player) //...
    CompletableFuture<String> name(Player player) //...
    CompletableFuture<Integer> points(Player player) //...
    CompletableFuture<List<Item>> inventory(Player player) //...
}

并发的来源在这里并不重要。有可能:

关键是,GraphQL考虑了这一未来,并同时调用多个解析器。看看Zipkin的效果如何:

A4I2PP2{2QE]F9@01P8@7N3.png

此图像教给我们两件事:

  • 整体延迟从1.1秒降至0.6 s-所有延迟之和与最大延迟之和
  • 甚至更重要的是-您是否注意到缓慢的inventory解析器对总延迟的影响最大?也许,作为客户,您可以跳过该属性并将等待时间减少一半?

GraphQL为客户提供了绝佳的机会来以细粒度的方式自定义其查询。您要决定要多少数据。API生产者不再负责。同样,API不必是最低公分母。每个客户都做出独立的决定,而不是_一个合适的选择_。最后但并非最不重要的一点是,能够轻松地描述每个解析器是一个巨大的胜利。GitHub上提供了本系列所有文章

完整源代码,包括Docker上的Zipkin设置。

相关文章
|
10天前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
35 4
|
12天前
|
缓存 安全 Java
如何理解Java中的并发?
Java并发指多任务交替执行,提升资源利用率与响应速度。通过线程实现,涉及线程安全、可见性、原子性等问题,需用synchronized、volatile、线程池及并发工具类解决,是高并发系统开发的关键基础。(238字)
95 4
|
3月前
|
SQL 缓存 安全
深度理解 Java 内存模型:从并发基石到实践应用
本文深入解析 Java 内存模型(JMM),涵盖其在并发编程中的核心作用与实践应用。内容包括 JMM 解决的可见性、原子性和有序性问题,线程与内存的交互机制,volatile、synchronized 和 happens-before 等关键机制的使用,以及在单例模式、线程通信等场景中的实战案例。同时,还介绍了常见并发 Bug 的排查与解决方案,帮助开发者写出高效、线程安全的 Java 程序。
196 0
|
3月前
|
Java API 调度
从阻塞到畅通:Java虚拟线程开启并发新纪元
从阻塞到畅通:Java虚拟线程开启并发新纪元
323 83
|
3月前
|
存储 Java 调度
Java虚拟线程:轻量级并发的革命性突破
Java虚拟线程:轻量级并发的革命性突破
304 83
|
4月前
|
Java 物联网 数据处理
Java Solon v3.2.0 史上最强性能优化版本发布 并发能力提升 700% 内存占用节省 50%
Java Solon v3.2.0 是一款性能卓越的后端开发框架,新版本并发性能提升700%,内存占用节省50%。本文将从核心特性(如事件驱动模型与内存优化)、技术方案示例(Web应用搭建与数据库集成)到实际应用案例(电商平台与物联网平台)全面解析其优势与使用方法。通过简单代码示例和真实场景展示,帮助开发者快速掌握并应用于项目中,大幅提升系统性能与资源利用率。
144 6
Java Solon v3.2.0 史上最强性能优化版本发布 并发能力提升 700% 内存占用节省 50%
|
5月前
|
缓存 安全 Java
【高薪程序员必看】万字长文拆解Java并发编程!(3-1):并发共享问题的解决与分析
活锁:多个线程相互影响对方退出同步代码块的条件而导致线程一直运行的情况。例如,线程1的退出条件是count=5,而线程2和线程3在其代码块中不断地是count进行自增自减的操作,导致线程1永远运行。内存一致性问题:由于JIT即时编译器对缓存的优化和指令重排等造成的内存可见性和有序性问题,可以通过synchronized,volatile,并发集合类等机制来解决。这里的线程安全是指,多个线程调用它们同一个实例的方法时,是线程安全的,但仅仅能保证当前调用的方法是线程安全的,不同方法之间是线程不安全的。
108 0
|
5月前
|
Java 程序员
【高薪程序员必看】万字长文拆解Java并发编程!(3-2):并发共享问题的解决与分析
wait方法和notify方法都是Object类的方法:让当前获取锁的线程进入waiting状态,并进入waitlist队列:让当前获取锁的线程进入waiting状态,并进入waitlist队列,等待n秒后自动唤醒:在waitlist队列中挑一个线程唤醒:唤醒所有在waitlist队列中的线程它们都是之间协作的手段,只有拥有对象锁的线程才能调用这些方法,否则会出现IllegalMonitorStateException异常park方法和unpark方法是LockSupport类中的方法。
104 0
|
5月前
|
机器学习/深度学习 消息中间件 存储
【高薪程序员必看】万字长文拆解Java并发编程!(9-2):并发工具-线程池
🌟 ​大家好,我是摘星!​ 🌟今天为大家带来的是并发编程中的强力并发工具-线程池,废话不多说让我们直接开始。
211 0

热门文章

最新文章