Python数据分析实战 | 经典的同期群分析(附实战数据和代码)

简介: 同期群分析是数据分析中一个hin经典的思维,核心是将用户按初始行为的发生时间,划分为不同的群组,进而分析相似群组的行为如何随时间变化而变化。

前几天写了一篇关于同期群分析的内容,主要从理论层面,讲清楚这个经典的分析思维是什么、为什么要做以及怎么延展。并且在文末立了个开放式flag,说点赞超过xx,就会更新提供源数据的Python实现篇。原文这里:都说经典,同同同期群分析到底是个啥?


话说像这种flag,本意其实是“拖延拖延,以后看心情更”。没想到啊,大家对于这个模型的实现有这么大的兴趣,我被不止一个群友盯梢催更....


这不,卑微小编,按时祭上原创~


这篇内容首先对同期群分析的概念做了简短的回顾,然后循着数据概览、数据清洗、思路剖析、单点实现以及最终实现的流程,力图做到每一步清晰明确和可复现。


跟着实践一遍,无论是模型理解程度还是Pandas运用的熟练度,都会蹭蹭往上蹿。


一、理论回顾


同期群分析是数据分析中一个hin经典的思维,核心是将用户按初始行为的发生时间,划分为不同的群组,进而分析相似群组的行为如何随时间变化而变化。


一般是通过像这样的留存表来实现:


15.png


每一行,代表当月新增客户,在接下来几个月的留存情况。


通过横向对比,能够对客户留存和生命周期有初步的认识。基于纵向观察,可以发现不同期客户,留存情况的差异,以反推该期引入的客户是否精准。


这个表看起来简单明晰,也有一些成熟的工具能够实现,但是,真要基于订单数据用Python来实现,还是要绞一番脑汁的。


二、数据概览



首先,导入订单数据,顺带看一看源数据长什么样子:


16.png


这是一份小z杂货铺的数据,比炒粉高级那么一些。后续分析会用到的关键字段有客户昵称,付款时间,订单状态和支付金额。


再查看数据量和缺失情况:


17.png


订单共计42713行,除付款时间外,其他都是完整的(不含缺失值)。


格式整体规整,付款时间为datetime格式,购买金额和数量则是数值型。


三、数据清洗



清洗的重点在于搞清楚为什么会有那么多付款时间是缺失的。我们先筛选出付款时间为空值的行,一探究竟:


18.png


貌似,缺失付款时间的数据,订单状态主要是“交易失败”。这里做一个初步推断,之所以缺失付款时间,是因为没有产生实际交易


19.png


果然,缺失付款时间的订单都是“交易失败”状态,而完整的数据则是“交易成功”。


接下来,只需要筛选出交易成功的订单就好:


20.png


40339行数据,就是同期群分析的主战场。


四、思路剖析



再让最开始的留存表刷一下存在感:


21.png


直接思考怎么样一次性生成这张表,着实费头发。更合理的方式是用搭积木的思维来拆解这张表。

这张表的每一行,代表一个同期群,而他们的本质逻辑是一样的。

  • 首先计算出当月新增的客户数,并记录客户昵称
  • 然后拿这部分客户,分别去和后面每个月购买的客户做匹配,并统计有多少客户出现复购(留存)

只要我们计算出每个月的新增客户和对应留存情况,把这些数据拼接在一起,就得到了梦寐以求的同期群留存表。

五、单月实现


循着上一步的思路,问题变得简单起来,实现一个月的计算逻辑,其他月份套用即可。

杂货铺的数据时间维度和上面的留存表不太一样,因为不涉及到时间序列,用字符串形式的“年-月”标签更加方便:


22.png


订单源数据是从19年9月开始,到2020年2月。我们以2019年10月的数据为样板,实现单行的同期群分析。


23.png


显而易见,2019年10月份一共有7336位客户,购买了8096笔订单。


接下来,我们要计算的是每个月的新增客户数,这个新增,是需要和之前的月份遍历匹配来验证的,2019年10月之前的客户就是2019年9月的数据:


24.png


和历史数据做匹配,验证并筛选出2019年10月新增的客户数:


25.png


然后,和10月之后每个月的客户昵称进行匹配,计算出每个月的留存情况


26.png


把最开始的当月新增客户加入到列表:


27.png


2019年10月新增客户7083位,次月(11月)留存539人,随后有所降低,而到了2020年2月留存回购客户数较上月有小幅上升。


其他月份的新增和留存计算分析逻辑,也是如此。


遍历合并



上一步我们以2019年10月为样板,先根据历史订单,匹配出当月纯新增客户,接着再以月的维度,对后续每个月的客户进行遍历,验证客户留存数量。


为了便于循环,我们引入了月份列表:


28.png


完整代码和关键注释如下:


#引入时间标签
month_lst = order['时间标签'].unique()
final = pd.DataFrame()
for i in range(len(month_lst) - 1):
    #构造和月份一样长的列表,方便后续格式统一
    count = [0] * len(month_lst)
    #筛选出当月订单,并按客户昵称分组
    target_month = order.loc[order['时间标签'] == month_lst[i],:]
    target_users = target_month.groupby('客户昵称')['支付金额'].sum().reset_index()
    #如果是第一个月份,则跳过(因为不需要和历史数据验证是否为新增客户)
    if i == 0:
        new_target_users = target_month.groupby('客户昵称')['支付金额'].sum().reset_index()
    else:
        #如果不是,找到之前的历史订单
        history = order.loc[order['时间标签'].isin(month_lst[:i]),:]
        #筛选出未在历史订单出现过的新增客户
        new_target_users = target_users.loc[target_users['客户昵称'].isin(history['客户昵称']) == False,:]
    #当月新增客户数放在第一个值中
    count[0] = len(new_target_users)
    #以月为单位,循环遍历,计算留存情况
    for j,ct in zip(range(i + 1,len(month_lst)),range(1,len(month_lst))):
        #下一个月的订单
        next_month = order.loc[order['时间标签'] == month_lst[j],:]
        next_users = next_month.groupby('客户昵称')['支付金额'].sum().reset_index()
        #计算在该月仍然留存的客户数量
        isin = new_target_users['客户昵称'].isin(next_users['客户昵称']).sum()
        count[ct] = isin
    #格式转置
    result = pd.DataFrame({month_lst[i]:count}).T
    #合并
    final = pd.concat([final,result])
final.columns = ['当月新增','+1月','+2月','+3月','+4月','+5月']


当当当当!顺利得到了我们预期的数据。


29.png


不过,真实数据是留存率形式体现,再稍做加工即可:


30.png


终于,大功告成!实现了我们所希望的同期群分析表。简单扫两眼,可以发现:


  • 横向观察,次月流失严重,表现最好的月份次月留存也只有12%,随后平稳降低,稳定在6%左右。
  • 纵向对比,2019年当月新增客户最少,仅有2042位,但人群相对精准,留存率表现优于其他月份。
  • ...


由于篇幅有限,可视化的部分就留给旁友们自己去实践咯~




相关文章
|
8天前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
21 2
|
8天前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析:从零开始的指南
【10月更文挑战第9天】使用Python进行数据分析:从零开始的指南
22 1
|
9天前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
27 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
6天前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
25 2
|
7天前
|
JSON 安全 数据安全/隐私保护
深度剖析:Python如何运用OAuth与JWT,为数据加上双保险🔐
【10月更文挑战第10天】本文介绍了OAuth 2.0和JSON Web Tokens (JWT) 两种现代Web应用中最流行的认证机制。通过使用Flask-OAuthlib和PyJWT库,详细展示了如何在Python环境中实现这两种认证方式,从而提升系统的安全性和开发效率。OAuth 2.0适用于授权过程,JWT则简化了认证流程,确保每次请求的安全性。结合两者,可以构建出既安全又高效的认证体系。
25 1
|
7天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
19 1
|
8天前
|
数据采集 数据可视化 数据挖掘
使用Python进行高效的数据分析
【10月更文挑战第9天】使用Python进行高效的数据分析
13 1
|
8天前
|
数据采集 机器学习/深度学习 数据挖掘
如何使用Python进行高效的数据分析
【10月更文挑战第9天】如何使用Python进行高效的数据分析
16 1
|
8天前
|
调度 开发者 Python
探索Python中的异步编程:从基础到实战
【10月更文挑战第9天】在Python的世界中,异步编程是一个让开发者既能提升应用性能又能保持代码可读性的强大工具。本文将带你一探究竟,从理解异步编程的基本概念开始,到深入剖析其背后的原理,再到通过实际代码示例掌握其应用技巧。无论你是异步编程的新手还是希望深化理解的老手,这篇文章都将为你打开一扇新的大门,让你的项目因使用异步而更加高效和强大。
|
5天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
56 0