Apache Hudi集成Spark SQL抢先体验

简介: Apache Hudi集成Spark SQL抢先体验

Apache Hudi集成Spark SQL抢先体验

1. 摘要


社区小伙伴一直期待的Hudi整合Spark SQL的PR正在积极Review中并已经快接近尾声,Hudi集成Spark SQL预计会在下个版本正式发布,在集成Spark SQL后,会极大方便用户对Hudi表的DDL/DML操作,下面就来看看如何使用Spark SQL操作Hudi表。


2. 环境准备


首先需要将PR拉取到本地打包,生成SPARK_BUNDLE_JAR(hudi-spark-bundle_2.11-0.9.0-SNAPSHOT.jar)


2.1 启动spark-sql

在配置完spark环境后可通过如下命令启动spark-sql

spark-sql --jars $PATH_TO_SPARK_BUNDLE_JAR  --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' --conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'


2.2 设置并发度

由于Hudi默认upsert/insert/delete的并发度是1500,对于演示的小规模数据集可设置更小的并发度。

set hoodie.upsert.shuffle.parallelism = 1;
set hoodie.insert.shuffle.parallelism = 1;
set hoodie.delete.shuffle.parallelism = 1;

同时设置不同步Hudi表元数据

set hoodie.datasource.meta.sync.enable=false;


3. Create Table


使用如下SQL创建表

create table test_hudi_table (
  id int,
  name string,
  price double,
  ts long,
  dt string
) using hudi
 partitioned by (dt)
 options (
  primaryKey = 'id',
  type = 'mor'
 )
 location 'file:///tmp/test_hudi_table'

说明:表类型为MOR,主键为id,分区字段为dt,合并字段默认为ts。

创建Hudi表后查看创建的Hudi表

show create table test_hudi_table

50.png


4. Insert Into


4.1 Insert

使用如下SQL插入一条记录

insert into test_hudi_table select 1 as id, 'hudi' as name, 10 as price, 1000 as ts, '2021-05-05' as dt

insert完成后查看Hudi表本地目录结构,生成的元数据、分区和数据与Spark Datasource写入均相同。

51.png


4.2 Select

使用如下SQL查询Hudi表数据

select * from test_hudi_table

查询结果如下

52.png


5. Update


5.1 Update

使用如下SQL将id为1的price字段值变更为20

update test_hudi_table set price = 20.0 where id = 1


5.2 Select

再次查询Hudi表数据

select * from test_hudi_table

查询结果如下,可以看到price已经变成了20.0

53.png

查看Hudi表的本地目录结构如下,可以看到在update之后又生成了一个deltacommit,同时生成了一个增量log文件。

54.png


6. Delete


6.1 Delete

使用如下SQL将id=1的记录删除

delete from test_hudi_table where id = 1

查看Hudi表的本地目录结构如下,可以看到delete之后又生成了一个deltacommit,同时生成了一个增量log文件。

55.png


6.2 Select

再次查询Hudi表

select * from test_hudi_table;

查询结果如下,可以看到已经查询不到任何数据了,表明Hudi表中已经不存在任何记录了。

56.png


7. Merge Into


7.1 Merge Into Insert

使用如下SQL向test_hudi_table插入数据

merge into test_hudi_table as t0
 using (
  select 1 as id, 'a1' as name, 10 as price, 1000 as ts, '2021-03-21' as dt
 ) as s0
 on t0.id = s0.id
 when not matched and s0.id % 2 = 1 then insert *


7.2 Select

查询Hudi表数据

select * from test_hudi_table

查询结果如下,可以看到Hudi表中存在一条记录

57.png


7.4 Merge Into Update

使用如下SQL更新数据

merge into test_hudi_table as t0
 using (
  select 1 as id, 'a1' as name, 12 as price, 1001 as ts, '2021-03-21' as dt
 ) as s0
 on t0.id = s0.id
 when matched and s0.id % 2 = 1 then update set *


7.5 Select

查询Hudi表

select * from test_hudi_table

查询结果如下,可以看到Hudi表中的分区已经更新了

58.png


7.6 Merge Into Delete

使用如下SQL删除数据

merge into test_hudi_table t0
 using (
  select 1 as s_id, 'a2' as s_name, 15 as s_price, 1001 as s_ts, '2021-03-21' as dt
 ) s0
 on t0.id = s0.s_id
 when matched and s_ts = 1001 then delete

查询结果如下,可以看到Hudi表中已经没有数据了

59.png


8. 删除表


使用如下命令删除Hudi表

drop table test_hudi_table;

使用show tables查看表是否存在

show tables;

可以看到已经没有表了

60.png


9. 总结


通过上面示例简单展示了通过Spark SQL Insert/Update/Delete Hudi表数据,通过SQL方式可以非常方便地操作Hudi表,降低了使用Hudi的门槛。另外Hudi集成Spark SQL工作将继续完善语法,尽量对标Snowflake和BigQuery的语法,如插入多张表(INSERT ALL WHEN condition1 INTO t1 WHEN condition2 into t2),变更Schema以及CALL Cleaner、CALL Clustering等Hudi表服务。

目录
相关文章
|
6月前
|
SQL Java 数据库连接
Apache Doris 支持 Arrow Flight SQL 协议,数据传输效率实现百倍飞跃
近年来,随着数据科学、数据湖分析等场景的兴起,对数据读取和传输速度提出更高的要求。而 JDBC/ODBC 作为与数据库交互的主流标准,在应对大规模数据读取和传输时显得力不从心,无法满足高性能、低延迟等数据处理需求。为提供更高效的数据传输方案,Apache Doris 在 2.1 版本中基于 Arrow Flight SQL 协议实现了高速数据传输链路,使得数据传输性能实现百倍飞跃。
|
3月前
|
消息中间件 Kafka 数据处理
实时数据流处理:Dask Streams 与 Apache Kafka 集成
【8月更文第29天】在现代数据处理领域,实时数据流处理已经成为不可或缺的一部分。随着物联网设备、社交媒体和其他实时数据源的普及,处理这些高吞吐量的数据流成为了一项挑战。Apache Kafka 作为一种高吞吐量的消息队列服务,被广泛应用于实时数据流处理场景中。Dask Streams 是 Dask 库的一个子模块,它为 Python 开发者提供了一个易于使用的实时数据流处理框架。本文将介绍如何将 Dask Streams 与 Apache Kafka 结合使用,以实现高效的数据流处理。
77 0
|
4月前
|
分布式计算 数据处理 流计算
实时计算 Flink版产品使用问题之使用Spark ThriftServer查询同步到Hudi的数据时,如何实时查看数据变化
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
SQL 分布式计算 Apache
Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一)
本文将在 Docker 环境下,为读者介绍如何快速搭建 Apache Doris + Apache Hudi 的测试及演示环境,并对各功能操作进行演示,帮助读者快速入门。
Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一)
|
4月前
|
SQL 数据处理 Apache
Apache Flink SQL:实时计算的核心引擎
Apache Flink SQL 的一些核心功能,并探讨了其在实时计算领域的应用。随着 Flink 社区的不断发展和完善,Flink SQL 将变得越来越强大,为实时数据分析带来更多的可能性。
|
5月前
|
SQL 分布式计算 HIVE
实时计算 Flink版产品使用问题之同步到Hudi的数据是否可以被Hive或Spark直接读取
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
消息中间件 Java Kafka
Spring Boot与Apache Kafka Streams的集成
Spring Boot与Apache Kafka Streams的集成
|
4月前
|
消息中间件 Java Kafka
Spring Boot与Apache Kafka集成的深度指南
Spring Boot与Apache Kafka集成的深度指南
|
5月前
|
消息中间件 Java Kafka
Spring Boot与Apache Kafka集成的深度指南
Spring Boot与Apache Kafka集成的深度指南
|
5月前
|
消息中间件 Java Kafka
实时计算 Flink版操作报错合集之从hudi读数据,报错NoSuchMethodError:org.apache.hudi.format.cow.vector.reader.PaequetColumnarRowSplit.getRecord(),该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
122 0

推荐镜像

更多
下一篇
无影云桌面