从零实现一个 k-v 存储引擎

简介: 写这篇文章的目的,是为了帮助更多的人理解 rosedb,我会从零开始实现一个简单的包含 PUT、GET、DELETE 操作的 k-v 存储引擎,你可以将其看做是一个简易版本的 rosedb,就叫它 minidb 吧(mini 版本的 rosedb)。

写这篇文章的目的,是为了帮助更多的人理解 rosedb,我会从零开始实现一个简单的包含 PUT、GET、DELETE 操作的 k-v 存储引擎,你可以将其看做是一个简易版本的 rosedb,就叫它 minidb 吧(mini 版本的 rosedb)。


无论你是 Go 语言初学者,还是想进阶 Go 语言,或者是对 k-v 存储感兴趣,都可以尝试自己动手实现一下,我相信一定会对你帮助很大的。


说到存储,其实解决的一个核心问题就是,怎么存放数据,怎么取出数据。在计算机的世界里,这个问题会更加的多样化。


计算机当中有内存和磁盘,内存是易失性的,掉电之后存储的数据全部丢失,所以,如果想要系统崩溃再重启之后依然正常使用,就不得不将数据存储在非易失性介质当中,最常见的便是磁盘。


所以,针对一个单机版的 k-v,我们需要设计数据在内存中应该怎么存放,在磁盘中应该怎么存放。


当然,已经有很多优秀的前辈们去探究过了,并且已经有了经典的总结,主要将数据存储的模型分为了两类:B+ 树和 LSM 树。

本文的重点不是讲这两种模型,所以只做简单介绍。


B+ 树


HL]OD3I7JDEGG9QPTSO8E{Q.png

B+ 树由二叉查找树演化而来,通过增加每层节点的数量,来降低树的高度,适配磁盘的页,尽量减少磁盘 IO 操作。

B+ 树查询性能比较稳定,在写入或更新时,会查找并定位到磁盘中的位置并进行原地操作,注意这里是随机 IO,并且大量的插入或删除还有可能触发页分裂和合并,写入性能一般,因此 B+ 树适合读多写少的场景。


LSM 树


DQBG_1~S2@O0(1[N~A_371P.png

LSM Tree(Log Structured Merge Tree,日志结构合并树)其实并不是一种具体的树类型的数据结构,而只是一种数据存储的模型,它的核心思想基于一个事实:顺序 IO 远快于随机 IO。

和 B+ 树不同,在 LSM 中,数据的插入、更新、删除都会被记录成一条日志,然后追加写入到磁盘文件当中,这样所有的操作都是顺序 IO。

LSM 比较适用于写多读少的场景。


看了前面的两种基础存储模型,相信你已经对如何存取数据有了基本的了解,而 minidb 基于一种更加简单的存储结构,总体上它和 LSM 比较类似。

我先不直接干巴巴的讲这个模型的概念,而是通过一个简单的例子来看一下 minidb 当中数据 PUT、GET、DELETE 的流程,借此让你理解这个简单的存储模型。


PUT


我们需要存储一条数据,分别是 key 和 value,首先,为预防数据丢失,我们会将这个 key 和 value 封装成一条记录(这里把这条记录叫做 Entry),追加到磁盘文件当中。Entry 的里面的内容,大致是 key、value、key 的大小、value 的大小、写入的时间。

~]K]{A1[16X}328D)YIZA4T.png

所以磁盘文件的结构非常简单,就是多个 Entry 的集合。

5FMRAW%4]YPR3{4`HE{H`PA.png

磁盘更新完了,再更新内存,内存当中可以选择一个简单的数据结构,比如哈希表。哈希表的 key 对应存放的是 Entry 在磁盘中的位置,便于查找时进行获取。

这样,在 minidb 当中,一次数据存储的流程就完了,只有两个步骤:一次磁盘记录的追加,一次内存当中的索引更新。


GET


再来看 GET 获取数据,首先在内存当中的哈希表查找到 key 对应的索引信息,这其中包含了 value 存储在磁盘文件当中的位置,然后直接根据这个位置,到磁盘当中去取出 value 就可以了。


DEL


然后是删除操作,这里并不会定位到原记录进行删除,而还是将删除的操作封装成 Entry,追加到磁盘文件当中,只是这里需要标识一下 Entry 的类型是删除。

然后在内存当中的哈希表删除对应的 key 的索引信息,这样删除操作便完成了。

可以看到,不管是插入、查询、删除,都只有两个步骤:一次内存中的索引更新,一次磁盘文件的记录追加。所以无论数据规模如何, minidb 的写入性能十分稳定。


Merge


最后再来看一个比较重要的操作,前面说到,磁盘文件的记录是一直在追加写入的,这样会导致文件容量也一直在增加。并且对于同一个 key,可能会在文件中存在多条 Entry(回想一下,更新或删除 key 内容也会追加记录),那么在数据文件当中,其实存在冗余的 Entry 数据。

举一个简单的例子,比如针对 key A, 先后设置其 value 为 10、20、30,那么磁盘文件中就有三条记录:

2~L7SW~9[KDLE_9E~D@4XBW.png

此时 A 的最新值是 30,那么其实前两条记录已经是无效的了。

针对这种情况,我们需要定期合并数据文件,清理无效的 Entry 数据,这个过程一般叫做 merge。

merge 的思路也很简单,需要取出原数据文件的所有 Entry,将有效的 Entry 重新写入到一个新建的临时文件中,最后将原数据文件删除,临时文件就是新的数据文件了。

9`LH(RCZXRS0HB@JVO_W]M1.png

这就是 minidb 底层的数据存储模型,它的名字叫做 bitcask,当然 rosedb 采用的也是这种模型。它本质上属于类 LSM 的模型,核心思想是利用顺序 IO 来提升写性能,只不过在实现上,比 LSM 简单多了。


介绍完了底层的存储模型,就可以开始代码实现了,我将完整的代码实现放到了我的 Github 上面,地址:

https://github.com/roseduan/minidb

文章当中就截取部分关键的代码。

首先是打开数据库,需要先加载数据文件,然后取出文件中的 Entry 数据,还原索引状态,关键部分代码如下:

func Open(dirPath string) (*MiniDB, error) {
   // 如果数据库目录不存在,则新建一个
   if _, err := os.Stat(dirPath); os.IsNotExist(err) {
      if err := os.MkdirAll(dirPath, os.ModePerm); err != nil {
         return nil, err
      }
   }
   // 加载数据文件
   dbFile, err := NewDBFile(dirPath)
   if err != nil {
      return nil, err
   }
   db := &MiniDB{
      dbFile:  dbFile,
      indexes: make(map[string]int64),
      dirPath: dirPath,
   }
   // 加载索引
   db.loadIndexesFromFile(dbFile)
   return db, nil
}

再来看看 PUT 方法,流程和上面的描述一样,先更新磁盘,写入一条记录,再更新内存:

func (db *MiniDB) Put(key []byte, value []byte) (err error) {
   offset := db.dbFile.Offset
   // 封装成 Entry
   entry := NewEntry(key, value, PUT)
   // 追加到数据文件当中
   err = db.dbFile.Write(entry)
   // 写到内存
   db.indexes[string(key)] = offset
   return
}

GET 方法需要先从内存中取出索引信息,判断是否存在,不存在直接返回,存在的话从磁盘当中取出数据。

 
         

DEL 方法和 PUT 方法类似,只是 Entry 被标识为了 DEL ,然后封装成 Entry 写到文件当中:

func (db *MiniDB) Put(key []byte, value []byte) (err error) {
   offset := db.dbFile.Offset
   // 封装成 Entry
   entry := NewEntry(key, value, PUT)
   // 追加到数据文件当中
   err = db.dbFile.Write(entry)
   // 写到内存
   db.indexes[string(key)] = offset
   return
}
GET 方法需要先从内存中取出索引信息,判断是否存在,不存在直接返回,存在的话从磁盘当中取出数据。
func (db *MiniDB) Get(key []byte) (val []byte, err error) {
   // 从内存当中取出索引信息
   offset, ok := db.indexes[string(key)]
   // key 不存在
   if !ok {
      return
   }
   // 从磁盘中读取数据
   var e *Entry
   e, err = db.dbFile.Read(offset)
   if err != nil && err != io.EOF {
      return
   }
   if e != nil {
      val = e.Value
   }
   return
}
DEL 方法和 PUT 方法类似,只是 Entry 被标识为了 DEL ,然后封装成 Entry 写到文件当中:
func (db *MiniDB) Del(key []byte) (err error) {
   // 从内存当中取出索引信息
   _, ok := db.indexes[string(key)]
   // key 不存在,忽略
   if !ok {
      return
   }
   // 封装成 Entry 并写入
   e := NewEntry(key, nil, DEL)
   err = db.dbFile.Write(e)
   if err != nil {
      return
   }
   // 删除内存中的 key
   delete(db.indexes, string(key))
   return
}


最后是重要的合并数据文件操作,流程和上面的描述一样,关键代码如下:

func (db *MiniDB) Merge() error {
   // 读取原数据文件中的 Entry
   for {
      e, err := db.dbFile.Read(offset)
      if err != nil {
         if err == io.EOF {
            break
         }
         return err
      }
      // 内存中的索引状态是最新的,直接对比过滤出有效的 Entry
      if off, ok := db.indexes[string(e.Key)]; ok && off == offset {
         validEntries = append(validEntries, e)
      }
      offset += e.GetSize()
   }
   if len(validEntries) > 0 {
      // 新建临时文件
      mergeDBFile, err := NewMergeDBFile(db.dirPath)
      if err != nil {
         return err
      }
      defer os.Remove(mergeDBFile.File.Name())
      // 重新写入有效的 entry
      for _, entry := range validEntries {
         writeOff := mergeDBFile.Offset
         err := mergeDBFile.Write(entry)
         if err != nil {
            return err
         }
         // 更新索引
         db.indexes[string(entry.Key)] = writeOff
      }
      // 删除旧的数据文件
      os.Remove(db.dbFile.File.Name())
      // 临时文件变更为新的数据文件
      os.Rename(mergeDBFile.File.Name(), db.dirPath+string(os.PathSeparator)+FileName)
      db.dbFile = mergeDBFile
   }
   return nil
}


除去测试文件,minidb 的核心代码只有 300 行,麻雀虽小,五脏俱全,它已经包含了 bitcask 这个存储模型的主要思想,并且也是 rosedb 的底层基础。

理解了 minidb 之后,基本上就能够完全掌握 bitcask 这种存储模型,多花点时间,相信对 rosedb 也能够游刃有余了。


进一步,如果你对 k-v 存储这方面感兴趣,可以更加深入的去研究更多相关的知识,bitcask 虽然简洁易懂,但是问题也不少,rosedb 在实践的过程当中,对其进行了一些优化,但目前还是有不少的问题存在。


有的人可能比较疑惑,bitcask 这种模型简单,是否只是一个玩具,在实际的生产环境中有应用吗?答案是肯定的。


bitcask 最初源于 Riak 这个项目的底层存储模型,而 Riak 是一个分布式 k-v 存储,在 NoSQL 的排名中也名列前茅:

L~LC5OA]4`6M]YJVH07]ELX.png

豆瓣所使用的的分布式 k-v 存储,其实也是基于 bitcask 模型,并对其进行了很多优化。目前纯粹基于 bitcask 模型的 k-v 并不是很多,所以你可以多去看看 rosedb 的代码,可以提出自己的意见建议,一起完善这个项目。

最后,附上相关项目地址:

minidb:https://github.com/roseduan/minidb

rosedb:https://github.com/roseduan/rosedb

参考资料:

https://riak.com/assets/bitca...

https://medium.com/@arpitbhay...

相关文章
|
存储 安全 关系型数据库
什么是存储引擎
什么是存储引擎
814 0
|
2月前
|
存储 关系型数据库 MySQL
MyISAM存储引擎
【10月更文挑战第29天】MyISAM存储引擎以其简单高效的存储结构、良好的查询性能和数据压缩功能,在一些特定的应用场景中具有一定的优势。但由于其不支持事务处理和表级锁机制的限制,在需要处理大量并发事务和保证数据一致性的场景中,通常会选择InnoDB等支持事务的存储引擎。在实际应用中,需要根据具体的业务需求和性能要求,合理地选择和使用存储引擎,以充分发挥其优势,提高数据库系统的性能和可靠性。
61 6
|
2月前
|
存储 关系型数据库 MySQL
数据库引擎之InnoDB存储引擎
【10月更文挑战第29天】InnoDB存储引擎以其强大的事务处理能力、高效的索引结构、灵活的锁机制和良好的性能优化特性,成为了MySQL中最受欢迎的存储引擎之一。在实际应用中,根据具体的业务需求和性能要求,合理地使用和优化InnoDB存储引擎,可以有效地提高数据库系统的性能和可靠性。
56 5
|
7月前
|
存储 关系型数据库 MySQL
MySQL数据库——存储引擎(2)-存储引擎特点(InnoDB、MyISAM、Memory)、存储引擎选择
MySQL数据库——存储引擎(2)-存储引擎特点(InnoDB、MyISAM、Memory)、存储引擎选择
98 1
|
存储 SQL 缓存
数据库存储引擎只有myisam和innodb,当场被面试官赶了出来!
数据库存储引擎只有myisam和innodb,当场被面试官赶了出来!
96 0
|
存储 关系型数据库 MySQL
InnoDB和MyISAM存储引擎对比
InnoDB和MyISAM存储引擎对比 相同点:都是B+索引,不清楚B+索引的可以看上一篇
76 1
|
存储 缓存 关系型数据库
InnoDB 与 MyISAM 的区别?如何选择存储引擎?
InnoDB 与 MyISAM 的区别?如何选择存储引擎?
348 0
|
存储 缓存 Oracle
第05章_存储引擎
第05章_存储引擎
106 0
|
存储 SQL 缓存
MySQL-体系结构以及常用存储引擎MyISAM和InnoDB初探
MySQL-体系结构以及常用存储引擎MyISAM和InnoDB初探
98 0
|
存储 SQL 缓存
LSMT存储引擎浅析
LSMT存储引擎浅析
552 1
LSMT存储引擎浅析

热门文章

最新文章