题目描述
这是 LeetCode 上的 307. 区域和检索 - 数组可修改 ,难度为 中等。
Tag : 「区间和」、「树状数组」、「线段树」
给你一个数组 nums
,请你完成两类查询,其中一类查询要求更新数组下标对应的值,另一类查询要求返回数组中某个范围内元素的总和。
实现 NumArray
类:
NumArray(int[] nums)
用整数数组nums
初始化对象void update(int index, int val)
将nums[index]
的值更新为val
int sumRange(int left, int right)
返回子数组nums[left, right]
的总和(即,nums[left] + nums[left + 1], ..., nums[right]
)
示例:
输入: ["NumArray", "sumRange", "update", "sumRange"] [[[1, 3, 5]], [0, 2], [1, 2], [0, 2]] 输出: [null, 9, null, 8] 解释: NumArray numArray = new NumArray([1, 3, 5]); numArray.sumRange(0, 2); // 返回 9 ,sum([1,3,5]) = 9 numArray.update(1, 2); // nums = [1,2,5] numArray.sumRange(0, 2); // 返回 8 ,sum([1,2,5]) = 8 复制代码
提示:
- 1 <= nums.length <= 3 * 10^41<=nums.length<=3∗104
- -100 <= nums[i] <= 100−100<=nums[i]<=100
- 0 <= index < nums.length0<=index<nums.length
- -100 <= val <= 100−100<=val<=100
- 0 <= left <= right < nums.length0<=left<=right<nums.length
- 最多调用 3 * 10^43∗104 次
update
和sumRange
方法
解题思路
这是一道很经典的题目,通常还能拓展出一大类问题。
针对不同的题目,我们有不同的方案可以选择(假设我们有一个数组):
- 数组不变,求区间和:「前缀和」、「树状数组」、「线段树」
- 多次修改某个数(单点),求区间和:「树状数组」、「线段树」
- 多次修改某个区间,输出最终结果:「差分」
- 多次修改某个区间,求区间和:「线段树」、「树状数组」(看修改区间范围大小)
- 多次将某个区间变成同一个数,求区间和:「线段树」、「树状数组」(看修改区间范围大小)
这样看来,「线段树」能解决的问题是最多的,那我们是不是无论什么情况都写「线段树」呢?
答案并不是,而且恰好相反,只有在我们遇到第 4/5 类问题,不得不写「线段树」的时候,我们才考虑线段树。
因为「线段树」代码很长,而且常数很大,实际表现不算很好。我们只有在不得不用的时候才考虑「线段树」。
总结一下,我们应该按这样的优先级进行考虑:
- 简单求区间和,用「前缀和」
- 多次将某个区间变成同一个数,用「线段树」
- 其他情况,用「树状数组」
树状数组
本题只涉及「单点修改」和「区间求和」,属于「树状数组」的经典应用。
「树状数组」本身是一个很简单的数据结构,但是要搞懂其为什么可以这样「查询」&「更新」还是比较困难的(特别是为什么可以这样更新),往往需要从「二进制分解」进行出发理解。
树状数组涉及的操作有两个,复杂度均为 O(\log{n})O(logn):
void add(int x, int u)
:含义为在 xx 的位置增加 uu(注意位置下标从 11 开始);int query(int x)
:含义为查询从 [1, x][1,x] 区间的和为多少(配合容斥原理,可实现任意区间查询)。
代码:
class NumArray { int[] tr; int lowbit(int x) { return x & -x; } void add(int x, int u) { for (int i = x; i <= n; i += lowbit(i)) tr[i] += u; } int query(int x) { int ans = 0; for (int i = x; i > 0; i -= lowbit(i)) ans += tr[i]; return ans; } int[] nums; int n; public NumArray(int[] _nums) { nums = _nums; n = nums.length; tr = new int[n + 10]; for (int i = 0; i < n; i++) add(i + 1, nums[i]); } public void update(int index, int val) { add(index + 1, val - nums[index]); nums[index] = val; } public int sumRange(int left, int right) { return query(right + 1) - query(left); } } 复制代码
- 时间复杂度:插入和查询复杂度均为 O(\log{n})O(logn)
- 空间复杂度:O(n)O(n)
线段树
相比「树状数组」,另外一个更为进阶且通用的做法是使用「线段树」。
线段树的所有操作同样为 O(\log{n}),O(logn),由于本题不涉及「区间修改」操作,因此我们的线段树只需要实现 pushup
操作(子节点往上更新父节点),而不需要实现用于懒标记的 pushdown
操作(父节点往下传递「更新」的操作)。
关于线段树设计的几种操作:
void build(int u, int l, int r)
:含义为从编号为 uu 的节点开始,构造范围为 [l,r][l,r] 的树节点;void update(int u, int x, int v)
:含义为从编号为uu的节点开始,在xx位置增加vv;
- 更具一般性(涉及区间修改)的操作应该为
void update(int u, int l, int r, int v)
,代表在 [l, r][l,r] 范围增加 vv;
int query(int u, int l, int r)
:含义为从编号为 uu 的节点开始,查询 [l, r][l,r] 区间和为多少。
注意:对于编号为
u
的节点而言,其左子节点的编号为u << 1
,其右节点的编号为u << 1 | 1
。
代码(考虑为线段树增加 static
优化的代码见 P2P2,样例个数较少,优化不明显):
class NumArray { Node[] tr; class Node { int l, r, v; Node(int _l, int _r) { l = _l; r = _r; } } void build(int u, int l, int r) { tr[u] = new Node(l, r); if (l == r) return; int mid = l + r >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); } void update(int u, int x, int v) { if (tr[u].l == x && tr[u].r == x) { tr[u].v += v; return ; } int mid = tr[u].l + tr[u].r >> 1; if (x <= mid) update(u << 1, x, v); else update(u << 1 | 1, x, v); pushup(u); } int query(int u, int l, int r) { if (l <= tr[u].l && tr[u].r <= r) return tr[u].v; int mid = tr[u].l + tr[u].r >> 1; int ans = 0; if (l <= mid) ans += query(u << 1, l, r); if (r > mid) ans += query(u << 1 | 1, l, r); return ans; } void pushup(int u) { tr[u].v = tr[u << 1].v + tr[u << 1 | 1].v; } int[] nums; public NumArray(int[] _nums) { nums = _nums; int n = nums.length; tr = new Node[n * 4]; build(1, 1, n); for (int i = 0; i < n; i++) update(1, i + 1, nums[i]); } public void update(int index, int val) { update(1, index + 1, val - nums[index]); nums[index] = val; } public int sumRange(int left, int right) { return query(1, left + 1, right + 1); } } 复制代码
class NumArray { static int N = 30010; static Node[] tr = new Node[N * 4]; class Node { int l, r, v; Node(int _l, int _r) { l = _l; r = _r; } } void build(int u, int l, int r) { if (tr[u] == null) { tr[u] = new Node(l, r); } else { tr[u].l = l; tr[u].r = r; tr[u].v = 0; } if (l == r) return ; int mid = l + r >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); } void update(int u, int x, int v) { if (tr[u].l == x && tr[u].r == x) { tr[u].v += v; return ; } int mid = tr[u].l + tr[u].r >> 1; if (x <= mid) update(u << 1, x, v); else update(u << 1 | 1, x, v); pushup(u); } int query(int u, int l, int r) { if (l <= tr[u].l && tr[u].r <= r) return tr[u].v; int mid = tr[u].l + tr[u].r >> 1; int ans = 0; if (l <= mid) ans += query(u << 1, l, r); if (r > mid) ans += query(u << 1 | 1, l, r); return ans; } void pushup(int u) { tr[u].v = tr[u << 1].v + tr[u << 1 | 1].v; } int[] nums; public NumArray(int[] _nums) { nums = _nums; int n = nums.length; build(1, 1, n); for (int i = 0; i < n; i++) update(1, i + 1, nums[i]); } public void update(int index, int val) { update(1, index + 1, val - nums[index]); nums[index] = val; } public int sumRange(int left, int right) { return query(1, left + 1, right + 1); } } 复制代码
- 时间复杂度:插入和查询复杂度均为 O(\log{n})O(logn)
- 空间复杂度:O(n)O(n)
最后
这是我们「刷穿 LeetCode」系列文章的第 No.307
篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour… 。
在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。