自然语言处理预训练模型商品评价购买决策分析-电商领域服务 Quick Start

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 自然语言处理(Natural Language Processing,简称NLP),是为各类企业及开发者提供的用于文本分析及挖掘的核心工具,旨在帮助用户高效的处理文本,已经广泛应用在电商、文娱、司法、公安、金融、医疗、电力等行业客户的多项业务中,取得了良好的效果。NLP自学习平台提供了一些预训练的特定领域模型服务。服务无需自主标注训练,直接调用API即可使用。商品评价购买决策分析服务适用于分析用户的购买动机、使用场景、功能需求等购买决策相关的信息,可帮助改进产品、改善用户体验、细分人群画像、针对性营销投放等。本文将使用Java SDK演示商品评价购买决策分析服务的快速调用,以供参考。

使用前提:服务开通与资源包购买

操作步骤:

1.添加pom依赖

   <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-core</artifactId>
            <version>4.5.25</version>
        </dependency>
        <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-nlp-automl</artifactId>
            <version>0.0.5</version>
        </dependency>
        <dependency>
            <groupId>com.aliyun</groupId>
            <artifactId>aliyun-java-sdk-alinlp</artifactId>
            <version>1.0.16</version>
       </dependency>

2.Code Sample

import com.aliyuncs.DefaultAcsClient;
import com.aliyuncs.IAcsClient;
import com.aliyuncs.exceptions.ClientException;
import com.aliyuncs.nlp_automl.model.v20191111.RunPreTrainServiceRequest;
import com.aliyuncs.nlp_automl.model.v20191111.RunPreTrainServiceResponse;
import com.aliyuncs.profile.DefaultProfile;
import com.google.gson.Gson;

import java.util.HashMap;
import java.util.Map;


//预训练模型 商品评价购买决策分析-电商领域 调用示例
public class Demo3 {
    public static void main(String[] args) throws ClientException{
        DefaultProfile defaultProfile = DefaultProfile.getProfile("cn-hangzhou","XXXXXXXXXX","XXXXXXXXXX");
        IAcsClient client = new DefaultAcsClient(defaultProfile);
        Map<String, Object> map = new HashMap<>();
        map.put("input", "服务态度不好,你们就是这种服务态度的?");
        RunPreTrainServiceRequest request = new RunPreTrainServiceRequest();
        request.setServiceName("Dialog-Analysis");
        //request.setPredictContent(JSON.toJSONString(map));
        request.setPredictContent(new Gson().toJson(map));
        RunPreTrainServiceResponse response = client.getAcsResponse(request);
        System.out.println(response.getPredictResult());
    }
}

3.测试结果

{"sentiment":{"score":1.0,"key":"负"},"emotion":{"score":0.4929790198802948,"key":"抱怨"},"aspectItem":[{"aspectPolarity":"负","terms":[{"aspectTerm":"服务态度","opinionTerm":"不好"}],"positiveProb":0.0,"aspectCategory":"客服-服务","negativeProb":1.0}],"category":{"score":0.45799994468688965,"key":"其他类-其他"},"intent":{"score":0.7565186023712158,"key":"无"}}

更多参考

快速入门-模型服务调用流程
预训练模型使用教程
商品评价购买决策分析-电商领域
阿里云自然语言处理PHP Core SDK使用Quick Start

目录
相关文章
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
【NLP】Datawhale-AI夏令营Day4打卡:预训练+微调范式
【NLP】Datawhale-AI夏令营Day4打卡:预训练+微调范式
|
3月前
|
人工智能 自然语言处理
【NLP自然语言处理】NLP中的常用预训练AI模型
【NLP自然语言处理】NLP中的常用预训练AI模型
|
5月前
|
自然语言处理 BI 数据处理
自然语言处理 Paddle NLP - 基于预训练模型完成实体关系抽取
自然语言处理 Paddle NLP - 基于预训练模型完成实体关系抽取
167 1
|
5月前
|
自然语言处理
【NLP】如何实现快速加载gensim word2vec的预训练的词向量模型
本文探讨了如何提高使用gensim库加载word2vec预训练词向量模型的效率,提出了三种解决方案:保存模型以便快速重新加载、仅保存和加载所需词向量、以及使用Embedding工具库代替word2vec原训练权重。
318 2
|
5月前
|
机器学习/深度学习 自然语言处理 搜索推荐
自然语言处理 Paddle NLP - 预训练模型产业实践课-理论
自然语言处理 Paddle NLP - 预训练模型产业实践课-理论
45 0
|
5月前
|
机器学习/深度学习 自然语言处理
自然语言处理 Paddle NLP - 预训练语言模型及应用
自然语言处理 Paddle NLP - 预训练语言模型及应用
47 0
|
6月前
|
自然语言处理 PyTorch API
`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。
`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
利用自然语言处理(NLP)改善客户服务:策略与实践
【5月更文挑战第14天】本文探讨了如何利用自然语言处理(NLP)技术优化客户服务,提高客户满意度和忠诚度。NLP作为AI的重要分支,通过机器学习和深度学习实现智能客服机器人、情感分析、文本分类与归纳及多渠道客服整合等功能。企业应明确业务需求,选择合适NLP工具,并持续优化,以提升服务质量和效率,塑造良好品牌形象。随着NLP技术发展,客户服务将迎来更高效、个性化的未来。
|
7月前
|
机器学习/深度学习 自然语言处理 PyTorch
【自然语言处理NLP】Bert预训练模型、Bert上搭建CNN、LSTM模型的输入、输出详解
【自然语言处理NLP】Bert预训练模型、Bert上搭建CNN、LSTM模型的输入、输出详解
306 0
|
7月前
|
机器学习/深度学习 自然语言处理 PyTorch
【从零开始学习深度学习】48.Pytorch_NLP实战案例:如何使用预训练的词向量模型求近义词和类比词
【从零开始学习深度学习】48.Pytorch_NLP实战案例:如何使用预训练的词向量模型求近义词和类比词

热门文章

最新文章