二叉树存储结构和二叉树中各种基本算法设计
(1) 创建二叉树;
(2) 输出二叉树;
(3) 输出‘H’结点的左右孩子结点值;
(4) 输出二叉树的高度;
(5) 释放二叉树。
#include<stdio.h> #include<malloc.h> #define MaxSize 100 typedef char ElemType; typedef struct node { ElemType data; struct node *lchild; struct node *rchild; }BTNode; void CreateBTree(BTNode *&b,char *str) { BTNode * St[MaxSize],*p; int top=-1,k,j=0;char ch; b=NULL; ch=str[j]; while(ch!='\0') { switch(ch) { case'(':top++;St[top]=p;k=1;break; case')':top--;break; case',':k=2;break; default:p=(BTNode *)malloc(sizeof(BTNode)); p->data=ch;p->lchild=p->rchild=NULL; if(b==NULL) b=p; else { switch(k) { case 1:St[top]->lchild=p;break; case 2:St[top]->rchild=p;break; } } } j++;ch=str[j]; } } void DestroyBTree(BTNode *&b) { if(b!=NULL) { DestroyBTree(b->lchild); DestroyBTree(b->rchild); free(b); } } BTNode *FindNode(BTNode *b,ElemType x) { BTNode *p; if(b==NULL) return NULL; else if(b->data==x) return b; else { p=FindNode(b->lchild,x); if(p!=NULL) return p; else return FindNode(b->rchild,x); } } BTNode *LchildNode(BTNode *p) { return p->lchild; } BTNode *RchildNode(BTNode *p) { return p->rchild; } int BTHeight(BTNode *b) { int lchildh,rchildh; if(b==NULL)return(0); else { lchildh=BTHeight(b->lchild); rchildh=BTHeight(b->rchild); return(lchildh>rchildh)?(lchildh+1):(rchildh+1); } } void DispBTree(BTNode *b) { if(b!=NULL) { printf("%c",b->data); if(b->lchild!=NULL||b->rchild!=NULL) { printf("("); DispBTree(b->lchild); if(b->rchild!=NULL)printf(","); DispBTree(b->rchild); printf(")"); } } } int main() { BTNode *b,*p,*lp,*rp;; printf("二叉树的基本运算如下:\n"); printf(" (1)创建二叉树\n"); CreateBTree(b,"A(B(D,E(H(J,k(L,M(,N))))),C(F,G(,I)))"); printf(" (2)输出二叉树:");DispBTree(b);printf("\n"); printf(" (3)H结点:"); p=FindNode(b,'H'); if(p!=NULL) { lp= LchildNode(p); if(lp!=NULL)printf("左孩子为%c",lp->data); else printf("无左孩子"); rp=RchildNode(p); if(rp!=NULL) printf("右孩子为%c",rp->data); else printf("无右孩子"); } printf("\n"); printf(" (4)二叉树b的高度:%d\n",BTHeight(b)); printf(" (5)释放二叉树b\n"); DestroyBTree(b); return 1; }
我是不会飞的飞鸟,肝文不易, 如果文章对你有帮助就点赞关注支持一下,下次再见!