Leedcode 每日一练 搜索二维矩阵Ⅰ Python实现

简介: Leedcode 每日一练 搜索二维矩阵Ⅰ Python实现

大一在读 大数据管理与应用专业 欢迎交流

备战蓝桥杯 倒计时70天

目前主要学习Python算法与数据结构

算法人算法魂 算法题让我们敢于挑战自己做意想不到的事情

快来试试今天的每日一练吧 Python小伙伴



问题描述:

image.png




来感受一下Python的简洁:遍历法(比较慢)

class Solution:
    def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
        for i in matrix:
            if target in i:return True
        return False

image.png

遍历法优化加强版:大于右上角最后一个元素 下移 否则左移动 注意特殊情况i>len(matrix)-1


class Solution:
    def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
        i=0
        while matrix[i][-1]<target:
            i+=1
            if i>len(matrix)-1:return False
        return True if target in matrix[i] else False

image.png

终极加强版:二分法(对上一种的再次优化)


我们不再通过遍历查找’右上角‘元素 而是通过二分法查找 再在内部进行二分


class Solution:
    def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
        m,n=len(matrix[0]),len(matrix)
        l,r=-1,len(matrix)
        while l+1<r:
            mid=(l+r)//2
            if matrix[mid][-1]>=target:#r指向右上角大于等于target的编号
                r=mid
            else:
                l=mid#l指向右上角小于target的元素
        if r==len(matrix):return False#特殊情况
        l1,r1=0,len(matrix[r])-1
        while l1<=r1:
            mid1=(l1+r1)//2
            if matrix[r][mid1]>target:
                r1=mid1-1
            elif matrix[r][mid1]<target:
                l1=mid1+1
            else:
                return True
        return False


image.png

效率一般 说明有时利用好Python内置的函数反而更快 不过这种思想要掌握


第一次二分查找时 二分写法利用了区域划分的写法

可以有效地防止出错 可以看我这篇博客 传送门!

https://blog.csdn.net/m0_62277756/article/details/122711847?spm=1001.2014.3001.5501


目录
相关文章
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
291 1
|
2月前
|
缓存 供应链 监控
1688item_search_factory - 按关键字搜索工厂数据接口深度分析及 Python 实现
item_search_factory接口专为B2B电商供应链优化设计,支持通过关键词精准检索工厂信息,涵盖资质、产能、地理位置等核心数据,助力企业高效开发货源、分析产业集群与评估供应商。
|
2月前
|
JSON 监控 数据格式
1688 item_search_app 关键字搜索商品接口深度分析及 Python 实现
1688开放平台item_search_app接口专为移动端优化,支持关键词搜索、多维度筛选与排序,可获取商品详情及供应商信息,适用于货源采集、价格监控与竞品分析,助力采购决策。
|
3月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
2月前
|
缓存 供应链 监控
VVIC seller_search 排行榜搜索接口深度分析及 Python 实现
VVIC搜款网seller_search接口提供服装批发市场的商品及商家排行榜数据,涵盖热销榜、销量排名、类目趋势等,支持多维度筛选与数据分析,助力选品决策、竞品分析与市场预测,为服装供应链提供有力数据支撑。
|
2月前
|
缓存 监控 算法
唯品会item_search - 按关键字搜索 VIP 商品接口深度分析及 Python 实现
唯品会item_search接口支持通过关键词、分类、价格等条件检索商品,广泛应用于电商数据分析、竞品监控与市场调研。结合Python可实现搜索、分析、可视化及数据导出,助力精准决策。
|
3月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
799 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
2月前
|
Web App开发 缓存 监控
微店店铺商品搜索(item_search_shop)接口深度分析及 Python 实现
item_search_shop接口用于获取特定店铺的全部商品数据,支持批量获取商品列表、基础信息、价格、销量等,适用于竞品监控、商品归类及店铺分析等场景,助力全面了解店铺经营状况。
|
2月前
|
JSON 缓存 供应链
电子元件 item_search - 按关键字搜索商品接口深度分析及 Python 实现
本文深入解析电子元件item_search接口的设计逻辑与Python实现,涵盖参数化筛选、技术指标匹配、供应链属性过滤及替代型号推荐等核心功能,助力高效精准的电子元器件搜索与采购决策。

推荐镜像

更多