Hive整合Hbase

本文涉及的产品
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
简介: HBase 虽然可以存储数亿或数十亿行数据,但是对于数据分析来说,不太友好,只提供了简单的基于 Key 值的快速查询能力,没法进行大量的条件查询。现有hbase的查询工具有很多如:Hive,Tez,Impala,Shark/Spark,Phoenix等。今天主要说Hive,Hive方便地提供了Hive QL的接口来简化MapReduce的使用, 而HBase提供了低延迟的数据库访问。如果两者结合,可以利用MapReduce的优势针对HBase存储的大量内容进行离线的计算和分析。

HBase 虽然可以存储数亿或数十亿行数据,但是对于数据分析来说,不太友好,只提供了简单的基于 Key 值的快速查询能力,没法进行大量的条件查询。现有hbase的查询工具有很多如:Hive,Tez,Impala,Shark/Spark,Phoenix等。今天主要说Hive,Hive方便地提供了Hive QL的接口来简化MapReduce的使用, 而HBase提供了低延迟的数据库访问。如果两者结合,可以利用MapReduce的优势针对HBase存储的大量内容进行离线的计算和分析。


Hive和HBase的通信原理


Hive与HBase整合的实现是利用两者本身对外的API接口互相通信来完成的,这种相互通信是通过$HIVE_HOME/lib/hive-hbase-handler-{hive.version}.jar工具类实现的。通过HBaseStorageHandler,Hive可以获取到Hive表所对应的HBase表名,列簇和列,InputFormat、OutputFormat类,创建和删除HBase表等。Hive访问HBase中表数据,实质上是通过MapReduce读取HBase表数据,其实现是在MR中,使用HiveHBaseTableInputFormat完成对HBase表的切分,获取RecordReader对象来读取数据。对HBase表的切分原则是一个Region切分成一个Split,即表中有多少个Regions,MR中就有多少个Map;读取HBase表数据都是通过构建Scanner,对表进行全表扫描,如果有过滤条件,则转化为Filter。当过滤条件为rowkey时,则转化为对rowkey的过滤;Scanner通过RPC调用RegionServer的next()来获取数据;

基本通信原理如下:

微信图片_20220429125632.png

具体步骤


新建hbase表:


create 'test', 'f1'


插入数据:

put 'test','1','f1:c1','name1'
put 'test','1','f1:c2','name2'
put 'test','2','f1:c1','name1'
put 'test','2','f1:c2','name2'
put 'test','3','f1:c1','name1'
put 'test','3','f1:c2','name2'


这里hbase有个列簇f1,有两个列c1c2,新建hive表关联hbase的这两列:

SET hbase.zookeeper.quorum=zkNode1,zkNode2,zkNode3;
SET zookeeper.znode.parent=/hbase;
ADD jar hive-hbase-handler-{hive.version}.jar;
CREATE EXTERNAL TABLE test.test (
rowkey string,
c1 string,
c2 string
) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,f1:c1,f1:c2")
TBLPROPERTIES ("hbase.table.name" = "test");


这里使用外部表映射到HBase中的表,hive对应的hdfs目录是空的,数据仍然在hbase中,这样在Hive中删除表,并不会删除HBase中的表,否则,就会删除。


另外,除了rowkey,其他三个字段使用Map结构来保存HBase中的每一个列族。

其中,参数解释如下:


  • hbase.zookeeper.quorum:


指定HBase使用的zookeeper集群,默认端口是2181,可以不指定,如果指定,格式为zkNode1:2222,zkNode2:2222,zkNode3:2222


  • zookeeper.znode.parent


指定HBase在zookeeper中使用的根目录

  • hbase.columns.mapping


Hive表和HBase表的字段一一映射,分别为:Hive表中第一个字段映射:key(rowkey),第二个字段映射列族f1:c1,第三个字段映射列族发:f1:c2。


  • hbase.table.name


HBase中表的名字


也可以直接在Hive中创建表的同时,完成在HBase中创建表。


在hive中查询hbase表:

hive> select * from test.test;
OK
1 name1 name2
2 name1 name2
3 name1 name2

也可以插入数据:


insert into test.test select '4', 'name4', 'name4';

查看hbase的数据:


hive> select * from test.test;
OK
1 name1 name2
2 name1 name2
3 name1 name2
4 name4 name4


Spark读取提升速度


hive关联hbase实际是底层是MR,速度较慢,此时可以使用spark读取hive表,进行查询操作,从而访问hbase数据。

目录
相关文章
|
SQL 存储 分布式数据库
【通过Hive清洗、处理和计算原始数据,Hive清洗处理后的结果,将存入Hbase,海量数据随机查询场景从HBase查询数据 】
【通过Hive清洗、处理和计算原始数据,Hive清洗处理后的结果,将存入Hbase,海量数据随机查询场景从HBase查询数据 】
643 0
|
5月前
|
SQL 存储 分布式数据库
分布式存储数据恢复—hbase和hive数据库数据恢复案例
分布式存储数据恢复环境: 16台某品牌R730xd服务器节点,每台服务器节点上有数台虚拟机。 虚拟机上部署Hbase和Hive数据库。 分布式存储故障: 数据库底层文件被误删除,数据库不能使用。要求恢复hbase和hive数据库。
204 12
|
SQL 关系型数据库 MySQL
Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
【2月更文挑战第9天】Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
475 7
|
SQL 分布式数据库 HIVE
Hbase 和Hive表关联
Hbase 和Hive表关联
143 0
|
SQL 分布式数据库 HIVE
Hbase二级索引_Hive on Hbase 及phoenix详解
Hbase二级索引_Hive on Hbase 及phoenix详解
208 0
|
SQL 分布式计算 分布式数据库
HBase 和 Hive 你能分清楚吗?(转拉勾教育)
HBase 和 Hive 你能分清楚吗?(转拉勾教育)
315 0
|
存储 SQL 分布式数据库
分布式数据恢复-hbase+hive分布式存储数据恢复案例
hbase+hive分布式存储数据恢复环境: 16台某品牌R730XD服务器节点,每台物理服务器节点上有数台虚拟机,虚拟机上配置的分布式,上层部署hbase数据库+hive数据仓库。 hbase+hive分布式存储故障&初检: 数据库文件被误删除,数据库无法使用。 通过现场对该分布式环境的初步检测,发现虚拟机还可以正常启动,虚拟机里面的数据库块文件丢失。好在块文件丢失之后没有对集群环境写入数据,底层数据损坏可能性比较小。
|
4月前
|
分布式计算 Ubuntu Hadoop
Ubuntu22.04下搭建Hadoop3.3.6+Hbase2.5.6+Phoenix5.1.3开发环境的指南
呈上,这些步骤如诗如画,但有效且动人。仿佛一个画家在画布上描绘出一幅完美的画面,这就是你的开发环境。接下来,尽情去创造吧,祝编程愉快!
235 19
|
分布式计算 Java Hadoop
java使用hbase、hadoop报错举例
java使用hbase、hadoop报错举例
252 4
|
11月前
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
234 4