Google Earth Engine——全球土地覆盖产品的基础数据集是MODIS年度土地覆盖产品(MCD12Q1)中的IGBP层

简介: Google Earth Engine——全球土地覆盖产品的基础数据集是MODIS年度土地覆盖产品(MCD12Q1)中的IGBP层

The underlying dataset for this landcover product is the IGBP layer found within the MODIS annual landcover product (MCD12Q1). This data was converted from its categorical format, which has a ≈500 meter resolution, to a fractional product indicating the integer percentage (0-100) of the output pixel covered by each of the 17 landcover classes (1 per band).

This dataset was produced by Harry Gibson and Daniel Weiss of the Malaria Atlas Project (Big Data Institute, University of Oxford, United Kingdom, [http://www.map.ox.ac.uk/] (http://www.map.ox.ac.uk/)).


这个土地覆盖产品的基础数据集是MODIS年度土地覆盖产品(MCD12Q1)中的IGBP层。该数据从其分类格式(具有≈500米的分辨率)转换为分数产品,表明17个土地覆被等级(每个波段1个)覆盖的输出像素的整数百分比(0-100)。

这个数据集是由Malaria Atlas项目的Harry Gibson和Daniel Weiss制作的(英国牛津大学大数据研究所,[http://www.map.ox.ac.uk/](http://www.map.ox.ac.uk/))。

Dataset Availability

2001-01-01T00:00:00 - 2013-01-01T00:00:00

Dataset Provider

Oxford Malaria Atlas Project

Collection Snippet

ee.ImageCollection("Oxford/MAP/IGBP_Fractional_Landcover_5km_Annual")

Resolution

5000 meters

Bands Table

Name Description Min Max Units
Overall_Class Dominant class of each resulting pixel 0 17
Water Percentage of water 0 100 %
Evergreen_Needleleaf_Forest Percentage of evergreen needleleaf forest 0 100 %
Evergreen_Broadleaf_Forest Percentage of evergreen broadleaf forest 0 100 %
Deciduous_Needleleaf_Forest Percentage of deciduous needleleaf forest 0 100 %
Deciduous_Broadleaf_Forest Percentage of deciduous broadleaf forest 0 100 %
Mixed_Forest Percentage of mixed forest 0 100 %
Closed_Shrublands Percentage of closed shrublands 0 100 %
Open_Shrublands Percentage of open shrublands 0 100 %
Woody_Savannas Percentage of woody savannas 0 100 %
Savannas Percentage of savannas 0 100 %
Grasslands Percentage of grasslands 0 100 %
Permanent_Wetlands Percentage of permanent wetlands 0 100 %
Croplands Percentage of croplands 0 100 %
Urban_And_Built_Up Percentage of urban and built up 0 100 %
Cropland_Natural_Vegetation_Mosaic Percentage of cropland natural vegetation mosaic 0 100 %
Snow_And_Ice Percentage of snow and ice 0 100 %
Barren_Or_Sparsely_Populated Percentage of barren or sparsely populated 0 100 %
Unclassified Percentage of unclassified 0 100 %
No_Data Percentage of no data 0 100 %

Class Table: Overall_Class

Value Color Color Value Description
0 #032f7e Water
1 #02740b Evergreen_Needleleaf_Fores
2 #02740b Evergreen_Broadleaf_Forest
3 #8cf502 Deciduous_Needleleaf_Forest
4 #8cf502 Deciduous_Broadleaf_Forest
5 #a4da01 Mixed_Forest
6 #ffbd05 Closed_Shrublands
7 #ffbd05 Open_Shrublands
8 #7a5a02 Woody_Savannas
9 #f0ff0f Savannas
10 #869b36 Grasslands
11 #6091b4 Permanent_Wetlands
12 #ff4e4e Croplands
13 #999999 Urban_and_Built-up
14 #ff4e4e Cropland_Natural_Vegetation_Mosaic
15 #ffffff Snow_and_Ice
16 #feffc0 Barren_Or_Sparsely_Vegetated
17 #020202 Unclassified


数据引用:

Weiss, D.J., P.M. Atkinson, S. Bhatt, B. Mappin, S.I. Hay & P.W. Gething (2014) An effective approach for gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 106-118.

代码:

var dataset =
    ee.ImageCollection('Oxford/MAP/IGBP_Fractional_Landcover_5km_Annual')
        .filter(ee.Filter.date('2012-01-01', '2012-12-31'));
var landcover = dataset.select('Overall_Class');
var landcoverVis = {
  min: 1.0,
  max: 19.0,
  palette: [
    '032f7e', '02740b', '02740b', '8cf502', '8cf502', 'a4da01', 'ffbd05',
    'ffbd05', '7a5a02', 'f0ff0f', '869b36', '6091b4', '999999', 'ff4e4e',
    'ff4e4e', 'ffffff', 'feffc0', '020202', '020202'
  ],
};
Map.setCenter(-88.6, 26.4, 1);
Map.addLayer(landcover, landcoverVis, 'Landcover');


相关文章
|
8月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2725 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
8月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
104 0
|
8月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
257 0
|
7月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI产品使用合集之PAI-DSW实例服务器ping不通google.com,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
8月前
|
分布式计算 Kubernetes 监控
容器服务Kubernetes版产品使用合集之registry.aliyuncs.com/google_containers 镜像仓库的地址是什么
容器服务Kubernetes版,作为阿里云提供的核心服务之一,旨在帮助企业及开发者高效管理和运行Kubernetes集群,实现应用的容器化与微服务化。以下是关于使用这些服务的一些建议和合集,涵盖基本操作、最佳实践、以及一些高级功能的使用方法。
736 0
|
8月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
678 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
8月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
124 0
|
8月前
|
数据采集 编解码 人工智能
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
Google Earth Engine(GEE)——全球每日近地表空气温度(2003-2020年)
251 0
|
8月前
|
人工智能
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
Google Earth Engine(GEE)——1984-2019年美国所有土地上的大火烧伤严重程度和范围数据集
76 0
|
8月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
168 0

热门文章

最新文章