大数据中必须要掌握的 Flink SQL 详细剖析 (一)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: Flink SQL 是 Flink 实时计算为简化计算模型,降低用户使用实时计算门槛而设计的一套符合标准 SQL 语义的开发语言。

Flink SQL 是 Flink 实时计算为简化计算模型,降低用户使用实时计算门槛而设计的一套符合标准 SQL 语义的开发语言。


自 2015 年开始,阿里巴巴开始调研开源流计算引擎,最终决定基于 Flink 打造新一代计算引擎,针对 Flink 存在的不足进行优化和改进,并且在 2019 年初将最终代码开源,也就是我们熟知的 Blink。Blink 在原来的 Flink 基础上最显著的一个贡献就是 Flink SQL 的实现。


Flink SQL 是面向用户的 API 层,在我们传统的流式计算领域,比如 Storm、Spark Streaming 都会提供一些 Function 或者 Datastream API,用户通过 Java 或 Scala 写业务逻辑,这种方式虽然灵活,但有一些不足,比如具备一定门槛且调优较难,随着版本的不断更新,API 也出现了很多不兼容的地方。


在这个背景下,毫无疑问,SQL 就成了我们最佳选择,之所以选择将 SQL 作为核心 API,是因为其具有几个非常重要的特点:


  • SQL 属于设定式语言,用户只要表达清楚需求即可,不需要了解具体做法;
  • SQL 可优化,内置多种查询优化器,这些查询优化器可为 SQL 翻译出最优执行计划;
  • SQL 易于理解,不同行业和领域的人都懂,学习成本较低;
  • SQL 非常稳定,在数据库 30 多年的历史中,SQL 本身变化较少;
  • 流与批的统一,Flink 底层 Runtime 本身就是一个流与批统一的引擎,而 SQL 可以做到 API 层的流与批统一。


1. Flink SQL 常用算子



SELECT


SELECT 用于从 DataSet/DataStream 中选择数据,用于筛选出某些列。

示例:

SELECT * FROM Table; // 取出表中的所有列

SELECT name,age FROM Table; // 取出表中 name 和 age 两列

与此同时 SELECT 语句中可以使用函数和别名,例如我们上面提到的 WordCount 中:

SELECT word, COUNT(word) FROM table GROUP BY word;


WHERE


WHERE 用于从数据集/流中过滤数据,与 SELECT 一起使用,用于根据某些条件对关系做水平分割,即选择符合条件的记录。


示例:

SELECT name,age FROM Table where name LIKE ‘% 小明 %’;

SELECT * FROM Table WHERE age = 20;

WHERE 是从原数据中进行过滤,那么在 WHERE 条件中,Flink SQL 同样支持 =、<、>、<>、>=、<=,以及 AND、OR 等表达式的组合,最终满足过滤条件的数据会被选择出来。并且 WHERE 可以结合 IN、NOT IN 联合使用。举个例子:

SELECT name, age
FROM Table
WHERE name IN (SELECT name FROM Table2)


DISTINCT


DISTINCT 用于从数据集/流中去重根据 SELECT 的结果进行去重。

示例:

SELECT DISTINCT name FROM Table;

对于流式查询,计算查询结果所需的 State 可能会无限增长,用户需要自己控制查询的状态范围,以防止状态过大。


GROUP BY


GROUP BY 是对数据进行分组操作。例如我们需要计算成绩明细表中,每个学生的总分。

示例:

SELECT name, SUM(score) as TotalScore FROM Table GROUP BY name;


UNION  和  UNION ALL


UNION 用于将两个结果集合并起来,要求两个结果集字段完全一致,包括字段类型、字段顺序。不同于 UNION ALL 的是,UNION 会对结果数据去重。

示例:

SELECT * FROM T1 UNION (ALL) SELECT * FROM T2;


JOIN


JOIN 用于把来自两个表的数据联合起来形成结果表,Flink 支持的 JOIN 类型包括:

JOIN - INNER JOIN

LEFT JOIN - LEFT OUTER JOIN

RIGHT JOIN - RIGHT OUTER JOIN

FULL JOIN - FULL OUTER JOIN

这里的 JOIN 的语义和我们在关系型数据库中使用的 JOIN 语义一致。


示例:

JOIN(将订单表数据和商品表进行关联)

SELECT * FROM Orders INNER JOIN Product ON Orders.productId = Product.id

LEFT JOIN 与 JOIN 的区别是当右表没有与左边相 JOIN 的数据时候,右边对应的字段补 NULL 输出,RIGHT JOIN 相当于 LEFT JOIN 左右两个表交互一下位置。FULL JOIN 相当于 RIGHT JOIN 和 LEFT JOIN 之后进行 UNION ALL 操作。


示例:

SELECT * FROM Orders LEFT JOIN Product ON Orders.productId = Product.id
SELECT * FROM Orders RIGHT JOIN Product ON Orders.productId = Product.id
SELECT * FROM Orders FULL OUTER JOIN Product ON Orders.productId = Product.id


Group Window


根据窗口数据划分的不同,目前 Apache Flink 有如下 3 种 Bounded Window:


Tumble,滚动窗口,窗口数据有固定的大小,窗口数据无叠加;

Hop,滑动窗口,窗口数据有固定大小,并且有固定的窗口重建频率,窗口数据有叠加;

Session,会话窗口,窗口数据没有固定的大小,根据窗口数据活跃程度划分窗口,窗口数据无叠加。


Tumble Window


Tumble 滚动窗口有固定大小,窗口数据不重叠,具体语义如下:


image.png


Tumble 滚动窗口对应的语法如下:


SELECT
    [gk],
    [TUMBLE_START(timeCol, size)],
    [TUMBLE_END(timeCol, size)],
    agg1(col1),
    ...
    aggn(colN)
FROM Tab1
GROUP BY [gk], TUMBLE(timeCol, size)


其中:


[gk] 决定了是否需要按照字段进行聚合;

TUMBLE_START 代表窗口开始时间;

TUMBLE_END 代表窗口结束时间;

timeCol 是流表中表示时间字段;

size 表示窗口的大小,如 秒、分钟、小时、天。


举个例子,假如我们要计算每个人每天的订单量,按照 user 进行聚合分组:


SELECT user,
      TUMBLE_START(rowtime, INTERVAL ‘1’ DAY) as wStart,
      SUM(amount)
FROM Orders
GROUP BY TUMBLE(rowtime, INTERVAL ‘1’ DAY), user;


Hop Window


Hop 滑动窗口和滚动窗口类似,窗口有固定的 size,与滚动窗口不同的是滑动窗口可以通过 slide 参数控制滑动窗口的新建频率。因此当 slide 值小于窗口 size 的值的时候多个滑动窗口会重叠,具体语义如下:


image.png


Hop 滑动窗口对应语法如下:


SELECT
    [gk],
    [HOP_START(timeCol, slide, size)] ,
    [HOP_END(timeCol, slide, size)],
    agg1(col1),
    ...
    aggN(colN)
FROM Tab1
GROUP BY [gk], HOP(timeCol, slide, size)


每次字段的意思和 Tumble 窗口类似:


[gk] 决定了是否需要按照字段进行聚合;

HOP_START 表示窗口开始时间;

HOP_END 表示窗口结束时间;

timeCol 表示流表中表示时间字段;

slide 表示每次窗口滑动的大小;

size 表示整个窗口的大小,如 秒、分钟、小时、天。


举例说明,我们要每过一小时计算一次过去 24 小时内每个商品的销量:


SELECT product,
      SUM(amount)
FROM Orders
GROUP BY HOP(rowtime, INTERVAL '1' HOUR, INTERVAL '1' DAY), product


Session Window


会话时间窗口没有固定的持续时间,但它们的界限由 interval 不活动时间定义,即如果在定义的间隙期间没有出现事件,则会话窗口关闭。


image.png

Seeeion 会话窗口对应语法如下:


SELECT
    [gk],
    SESSION_START(timeCol, gap) AS winStart,
    SESSION_END(timeCol, gap) AS winEnd,
    agg1(col1),
     ...
    aggn(colN)
FROM Tab1
GROUP BY [gk], SESSION(timeCol, gap)


[gk] 决定了是否需要按照字段进行聚合;

SESSION_START 表示窗口开始时间;

SESSION_END 表示窗口结束时间;

timeCol 表示流表中表示时间字段;

gap 表示窗口数据非活跃周期的时长。


例如,我们需要计算每个用户访问时间 12 小时内的订单量:


SELECT user,
      SESSION_START(rowtime, INTERVAL ‘12’ HOUR) AS sStart,
      SESSION_ROWTIME(rowtime, INTERVAL ‘12’ HOUR) AS sEnd,
      SUM(amount)
FROM Orders
GROUP BY SESSION(rowtime, INTERVAL ‘12’ HOUR), user


Table API 和 SQL 捆绑在 flink-table Maven 工件中。必须将以下依赖项添加到你的项目才能使用 Table API 和 SQL:


<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table_2.11</artifactId>
    <version>${flink.version}</version>
</dependency>
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
24天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
69 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
15天前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
25天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
53 1
zdl
|
11天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
42 0
|
1月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
|
6月前
|
SQL NoSQL Java
Flink SQL 问题之执行报错如何解决
Flink SQL报错通常指在使用Apache Flink的SQL接口执行数据处理任务时遇到的问题;本合集将收集常见的Flink SQL报错情况及其解决方法,帮助用户迅速恢复数据处理流程。
604 2
|
6月前
|
SQL Java 关系型数据库
Flink SQL 问题之用代码执行报错如何解决
Flink SQL报错通常指在使用Apache Flink的SQL接口执行数据处理任务时遇到的问题;本合集将收集常见的Flink SQL报错情况及其解决方法,帮助用户迅速恢复数据处理流程。
714 6
|
6月前
|
SQL 消息中间件 Oracle
Flink SQL 问题之写入ES报错如何解决
Flink SQL报错通常指在使用Apache Flink的SQL接口执行数据处理任务时遇到的问题;本合集将收集常见的Flink SQL报错情况及其解决方法,帮助用户迅速恢复数据处理流程。
105 4
|
6月前
|
SQL JSON Java
Flink SQL 问题之重启报错如何解决
Flink SQL报错通常指在使用Apache Flink的SQL接口执行数据处理任务时遇到的问题;本合集将收集常见的Flink SQL报错情况及其解决方法,帮助用户迅速恢复数据处理流程。
140 3
|
6月前
|
SQL 资源调度 分布式数据库
Flink SQL 问题之服务器报错如何解决
Flink SQL报错通常指在使用Apache Flink的SQL接口执行数据处理任务时遇到的问题;本合集将收集常见的Flink SQL报错情况及其解决方法,帮助用户迅速恢复数据处理流程。
125 3
下一篇
无影云桌面