专访阿里研究员袁全:从 AI 玩《星际争霸》谈认知智能的现状与趋势

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 推荐是经典的机器学习&大数据任务,依赖于每天产生的上亿用户数据,而认知计算最核心的能力是实现算法的智能化,提升智能体的自主学习能力,对大数据依赖性会变弱。

不同于以提升点击率和转化率等优化指标为主的机器学习模型,认知计算以实现算法和智能化为核心,训练智能体的自主学习能力,以及多个智能体之间的协作和配合能力,和原来优化大数据和算法具有很大的区别。近日,笔者就认知计算、应用场景、算法优化、深度学习以及云计算&大数据技术的关系等问题与阿里认知计算实验室研究员、资深总监袁全进行了深入探讨。

图片描述

阿里认知计算实验室研究员、资深总监袁全(左一)

深耕细作,瞭望人工智能新征程

“人工智能时代,我们专注认知计算研究,以积累核心算法系统为首要目标”——袁全。

袁全的研究始于06年开始的个性化推荐,彼时他在IBM研究院率先研发这一新技术。在12年加入阿里后,他主要负责手机淘宝、天猫的个性化推荐技术,包括算法、平台和产品的协同。袁全和他的团队致力于个性化推荐算法,典型产品有“有好货”、“猜你喜欢”等。15-16年团队主要研究淘宝首页的全面个性化,在去年年中的时候,以AlphaGo为代表的人工智能、认知决策技术的升级带来了非常多的新理念和新技术,袁全所带领的新团队也转战认知计算这一领域,目标是在人工智能时代,积累核心算法系统和能力。

挑战与机遇并存,认知学习深入解读

“最大的挑战在于它是一个非常新的多种类交叉学科,涉及内脑科学、认知心理学、机器学习甚至是博弈论,是一个全新的开始”——袁全。

推荐是经典的机器学习&大数据任务,依赖于每天产生的上亿用户数据,而认知计算最核心的能力是实现算法的智能化,提升智能体的自主学习能力,对大数据依赖性会变弱。从商品推荐到认知计算这一转变过程中,最重要的是要依靠认知科学来启发算法的认知设计,袁全表示,因为人脑是我们唯一所知的具有举一反三学习能力的物体,所以其中最大的挑战就在于它是一个非常新的多种类的交叉学科,涉及脑科学、认知心理学、机器学习甚至是博弈论,是一个全新的开始。

最近袁全带领团队在星际争霸游戏中对智能体的研究,则恰好验证了这一点。他们与伦敦大学学院计算机系汪军教授紧密配合,发布并开源了Gym StarCraft框架,探索新的训练智能体的方式,而不再像以前那样仅以提升学习指标为目标,而是致力于在一个干净的的环境中,训练智能体的自主学习能力,以及多个智能体之间的沟通与协作。事实上,《星际争霸》有其自身的特点,它的搜索空间比围棋更大,围棋是10的100次方数量级,而完整的星际游戏却是10的1000次方,整整大了10个数量级。而且不同于围棋双方博弈的透明性,《星际争霸》的决策是不确定性博弈,需要平衡短中长期的收益,与电商中的若干主要问题联系也很密切。( 论文下载:Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games

图片描述

应用于《星际争霸》游戏中的双向协调网络(BiCNet)

深度学习作为认知学习中重要推动力和实验工具,也已演化成研究智能的一个非常重要的平台,包括越来越多的国内外高校都在用深度学习去模拟人脑结构,尤其是深度神经网络对人脑的罗列和实现能力。当然后续也会结合其他流派的一些算法,例如结合符号主义、概率推理等,从而实现更好的学习能力。

机遇与挑战并存,更好的学习能力往往意味着更艰难的当下。袁全表示,在应用过程中,团队不断改进算法等技术,以期实现更佳的效果和用户体验。细化到算法调优上,不仅从agent通信机制间提高通信效率,还兼顾agent个体和全体收益,智能体的反馈激励机制优化、全局和动态信息的组合运用等,使得模型的通用性和扩展能力大大增强。

不过随着智能发展的火爆,各种AI威胁论也随之发酵。从团队的整个学习过程,以及AlphaGo等例子来看,智能的学习能力确实很有可能超越人类,机器协同效率远高于人的协同效率,很可能是一个催化要素,加之硬件和算法不断进步,智能对人类的威胁的确可能存在。现在看来最好的方式,是开放研究、共享新技术,多方共同逼近和实现目标;同时在AI的机制设定上,多引导其往人类不擅长、解决不了的问题上进行,与人类形成良性协作,相互增强。

另外,袁全还谈到了云计算、大数据与认知学习的微妙关系。诚然,智能体的训练对海量数据的处理能力提出了更高的要求,三者相辅相成,但是目前从很多的进展来看,小样本学习的技术也在不断提升,所以数据量级并非越大越好,学习能力越强的智能体对数据的依赖程度越低,这也是一个新的认知。

立足当下,美好蓝图亟待描绘

“引进智能化,理想情况就是说,每个用户背后都会有个智能体在专注地为他服务”——袁全。

在研究认知计算的过程中,袁全的团队由浅入深,不断补缀;结合AI在推荐等领域的应用,袁全认为利用AI去解决推荐的惊喜性问题,是一个技术和商业的很好结合。基于AI提供用户需要但自身并未意识到的商品和信息服务,逐步引进智能化,理想情况就是说,每个用户背后都会有个智能体在专注地为他服务。

给初学者的建议

对于想要从事个性化推荐、认知计算、通用智能的同学,袁全表示,扎实的功底必不可少,包括基础的编程能力和数学能力。在此之上,再根据个人的特点选择分支:甚至是一些偏深入研究的方向,例如,受脑神经科学启发的认知学习机制;或者选择通用智能领域,很多做通用智能的人都具有扎实的机器学习、强化学习背景;最后是非常重要的工程和系统架构能力,这是实现智能必不可少的一点。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1天前
|
传感器 人工智能 监控
AI与物联网的融合:开启智能化未来的新篇章
AI与物联网的融合:开启智能化未来的新篇章
123 96
|
4天前
|
人工智能 前端开发 Unix
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
|
1天前
|
机器学习/深度学习 人工智能 资源调度
基于AI的运维资源调度:效率与智能的双重提升
基于AI的运维资源调度:效率与智能的双重提升
30 16
基于AI的运维资源调度:效率与智能的双重提升
|
3天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
58 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
4天前
|
人工智能 运维 Kubernetes
阿里云容器服务AI助手2.0 - 新一代容器智能运维能力
2024年11月,阿里云容器服务团队进一步深度融合现有运维可观测体系,在场景上覆盖了K8s用户的全生命周期,正式推出升级版AI助手2.0,旨在更好地为用户使用和运维K8S保驾护航。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在内容创作中的创新:开启智能创意的新时代
AI在内容创作中的创新:开启智能创意的新时代
54 14
|
1天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
21小时前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
24 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
8天前
|
存储 SQL 人工智能
Lindorm:AI和具身智能时代的海量多模数据服务
本次分享由阿里云资深技术专家沈春辉介绍Lindorm数据库在AI和具身智能时代的应用。Lindorm定位于提供海量多模数据服务,融合了结构化、半结构化及非结构化数据的处理能力,支持时序、地理位置、文本、向量等多种数据类型。其核心特点包括多模一体化、云原生分布式架构、异步攒批写入、冷热数据分离、深度压缩优化、丰富索引和Serverless计算等,旨在提升研发效率并降低成本。Lindorm已广泛应用于车联网领域,覆盖60%国内头部车企,支撑近百PB数据规模,带来90%业务成本下降。
|
6天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
135 97