LeetCode 动态规划之矩阵区域和

简介: LeetCode 动态规划之矩阵区域和

题目


矩阵区域和


给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和:


i - k <= r <= i + k,

j - k <= c <= j + k(r, c) 在矩阵内。  


示例 1:


输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[12,21,16],[27,45,33],[24,39,28]]


示例 2:


输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
输出:[[45,45,45],[45,45,45],[45,45,45]]


提示:


m == mat.length
n == mat[i].length
1 <= m, n, k <= 100
1 <= mat[i][j] <= 100


题解


解题分析


解题思路


  1. 本题是以典型的动态规划问题;


  1. 获取前缀矩阵dp[][]


dp[i+1][j+1] = dp[i][j+1]+dp[i+1][j]+arr[i][j]-dp[i][j];


  1. 根据前缀矩阵计算结果


  • 核心问题转化为了:1).求这两个过程的转移方程;2). 边界处理.


  1. 解题代码如下所示:


复杂度


时间复杂度: O(M * N)


空间复杂度: O(M * N)


解题代码


题解代码如下(代码中有详细的注释说明):


class Solution {
    public int[][] matrixBlockSum(int[][] mat, int k) {
        int m = mat.length,n = mat[0].length;
        int[][] dp = get_dp(mat,m,n);
        return get_res(dp,m,n,k);
    }
    //获取dp数组
    public int[][] get_dp(int[][] arr,int m,int n){
        int[][] dp = new int[m+1][n+1];
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
                dp[i+1][j+1] = dp[i][j+1]+dp[i+1][j]+arr[i][j]-dp[i][j];
        return dp;
    }
    //获取结果
    public int[][] get_res(int[][] dp,int m,int n,int k){
        int[][] res = new int[m][n];
        int x1,y1,x2,y2;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                x1 = Math.max(0,i-k);y1 = Math.max(0,j-k);
                x2 = Math.min(m,i+k+1);y2 = Math.min(n,j+k+1);
                res[i][j] = dp[x2][y2]-dp[x1][y2]-dp[x2][y1]+dp[x1][y1];
            }
        }
        return res;
    }
}


提交后反馈结果(由于该题目没有进行优化,性能一般):


image.png


参考信息




相关文章
|
6月前
|
算法 Go
【LeetCode 热题100】73:矩阵置零(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 73——矩阵置零问题,提供两种解法:一是使用额外标记数组,时间复杂度为 O(m * n),空间复杂度为 O(m + n);二是优化后的原地标记方法,利用矩阵的第一行和第一列记录需要置零的信息,将空间复杂度降低到 O(1)。文章通过清晰的代码示例与复杂度分析,帮助理解“原地操作”及空间优化技巧,并推荐相关练习题以巩固矩阵操作能力。适合刷题提升算法思维!
155 9
|
6月前
|
机器学习/深度学习 算法 Go
【LeetCode 热题100】139:单词拆分(动态规划全解析+细节陷阱)(Go语言版)
本题是 LeetCode 热题 139:单词拆分(Word Break),需判断字符串 `s` 是否能由字典 `wordDict` 中的单词拼接而成。通过动态规划(DP)或记忆化搜索解决。DP 中定义布尔数组 `dp[i]` 表示前 `i` 个字符是否可拆分,状态转移方程为:若存在 `j` 使 `dp[j]=true` 且 `s[j:i]` 在字典中,则 `dp[i]=true`。初始条件 `dp[0]=true`。代码实现中用哈希集合优化查找效率。记忆化搜索则从起始位置递归尝试所有切割点。两种方法各有利弊,DP 更适合面试场景。思考扩展包括输出所有拆分方式及使用 Trie 优化大字典查找。
161 6
|
存储 算法 NoSQL
LeetCode第73题矩阵置零
文章介绍了LeetCode第73题"矩阵置零"的解法,通过使用矩阵的第一行和第一列作为标记来记录哪些行或列需要置零,从而在不增加额外空间的情况下解决问题。
LeetCode第73题矩阵置零
|
12月前
|
算法 C++
Leetcode第59题(螺旋矩阵2)
这篇文章介绍了解决LeetCode第59题“螺旋矩阵II”的算法,通过C++编程实现按顺时针顺序填充一个n x n的正方形矩阵。
75 0
|
算法 Java
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
LeetCode经典算法题:矩阵中省份数量经典题目+三角形最大周长java多种解法详解
153 6
|
算法 JavaScript Python
【Leetcode刷题Python】79. 单词搜索和剑指 Offer 12. 矩阵中的路径
Leetcode第79题"单词搜索"的Python解决方案,使用回溯算法在给定的二维字符网格中搜索单词,判断单词是否存在于网格中。
215 4
|
算法 Python
【Leetcode刷题Python】73. 矩阵置零
本文介绍了LeetCode第73题的解法,题目要求在给定矩阵中将所有值为0的元素所在的行和列全部置为0,并提供了一种原地算法的Python实现。
184 0
【Leetcode刷题Python】73. 矩阵置零
|
算法
力扣经典150题第三十七题:矩阵置零
力扣经典150题第三十七题:矩阵置零
86 2
|
缓存
力扣每日一题 6/14 动态规划+数组
力扣每日一题 6/14 动态规划+数组
101 1
|
算法 索引
力扣每日一题 6/28 动态规划/数组
力扣每日一题 6/28 动态规划/数组
116 0

热门文章

最新文章