LeetCode 动态规划之解码方法

简介: LeetCode 动态规划之解码方法

题目


解码方法一条包含字母 A-Z 的消息通过以下映射进行了 编码 :


'A' -> "1"
'B' -> "2"
...
'Z' -> "26"


要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,"11106" 可以映射为:


"AAJF" ,将消息分组为 (1 1 10 6)
"KJF" ,将消息分组为 (11 10 6)


注意,消息不能分组为  (1 11 06) ,因为 "06" 不能映射为 "F" ,这是由于 "6" 和 "06" 在映射中并不等价。


给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。


题目数据保证答案肯定是一个 32 位 的整数。


示例 1:


输入:s = "12"
输出:2
解释:它可以解码为 "AB"(1 2)或者 "L"(12)。
示例 2:
输入:s = "226"
输出:3
解释:它可以解码为 "BZ" (2 26), "VF" (22 6), 或者 "BBF" (2 2 6) 。
示例 3:
输入:s = "0"
输出:0
解释:没有字符映射到以 0 开头的数字。
含有 0 的有效映射是 'J' -> "10" 和 'T'-> "20" 。
由于没有字符,因此没有有效的方法对此进行解码,因为所有数字都需要映射。


提示:


1 <= s.length <= 100
s 只包含数字,并且可能包含前导零。


题解


解题分析


解题思路


根据题意,对于给定的字符串 s,设它的长度为 n,其中的字符从左到右依次为 s[1], s[2],⋯,s[n]。我们可以使用动态规划的方法计算出字符串 s 的解码方法数。


具体地,设 fi 表示字符串 s 的前 i 个字符 s[1..i] 的解码方法数。在进行状态转移时,我们可以考虑最后一次解码使用了 s 中的哪些字符,那么会有下面的两种情况:


情况一:我们使用了一个字符,即 s[i] 进行解码,那么只要 s[i] 不等于 0,它就可以被解码成 A∼I 中的某个字母。由于剩余的前 i-1 个字符的解码方法数为 fi -1 ,因此我们可以写出状态转移方程:


fi = fi -1, 其中 s[i] 不等于 0


情况二:我们使用了两个字符,即 s[i−1]s[i] 进行编码。与第一种情况类似,s[i-1] 不能等于 0,并且 s[i-1]s[i] 组成的整数必须小于等于 26,这样它们就可以被解码成 J∼Z 中的某个字母。由于剩余的前 i-2 个字符的解码方法数为 fi-2 ,因此我们可以写出状态转移方程:


fi =  fi -2, 其中 s[i - 1] 不等于 0 并且 10 * s[i-1] + s[i] <= 26


需要注意的是,只有当 i>1 时才能进行转移,否则 s[i-1] 不存在。


将上面的两种状态转移方程在对应的条件满足时进行累加,即可得到的值。在动态规划完成后,最终的答案即为 fn


注意:


动态规划的边界条件为:


f0 = 1


即空字符串可以有 1 种解码方法,解码出一个空字符串。


复杂度分析


  • 时间复杂度:O(N)


  • 空间复杂度:O(N)


解题代码


题解代码如下(代码中有详细的注释说明):


class Solution {
    public int numDecodings(String s) {
int n = s.length();
            int[] f = new int[n + 1];
            f[0] = 1;
            for (int i = 1; i <= n; i++) {
                if (s.charAt(i - 1) != '0') {
                    f[i] += f[i - 1];
                }
                if (i > 1 && s.charAt(i - 2) != '0'
                        && (((s.charAt(i - 2)- '0') * 10 + (s.charAt(i - 1) - '0')) <= 26)) {
                    f[i] += f[i - 2];
                }
            }
            return f[n];
    }
}


提交后反馈结果:


image.png


参考信息



相关文章
|
4月前
|
算法 Python
【Leetcode刷题Python】百分号解码
深信服公司的算法笔试题.
40 1
|
6月前
|
缓存
力扣每日一题 6/14 动态规划+数组
力扣每日一题 6/14 动态规划+数组
41 1
|
6月前
|
算法 Python
LeetCode 常用方法
LeetCode 常用方法
|
6月前
|
存储 算法 数据可视化
【模拟面试问答】深入解析力扣164题:最大间距(桶排序与排序方法详解)
【模拟面试问答】深入解析力扣164题:最大间距(桶排序与排序方法详解)
|
6月前
|
存储 算法 数据可视化
深入解析力扣161题:相隔为 1 的编辑距离(逐字符比较与动态规划详解)
深入解析力扣161题:相隔为 1 的编辑距离(逐字符比较与动态规划详解)
|
6月前
|
存储 算法 数据可视化
力扣156题最全解法:如何上下翻转二叉树(递归与迭代方法详解,附图解)
力扣156题最全解法:如何上下翻转二叉树(递归与迭代方法详解,附图解)
|
6月前
|
SQL 算法 数据挖掘
深入解析力扣183题:从不订购的客户(LEFT JOIN与子查询方法详解)
深入解析力扣183题:从不订购的客户(LEFT JOIN与子查询方法详解)
|
6月前
|
算法 数据挖掘 大数据
深入解析力扣172题:阶乘后的零(计算因子5的方法详解及模拟面试问答)
深入解析力扣172题:阶乘后的零(计算因子5的方法详解及模拟面试问答)
|
6月前
|
存储 算法 数据可视化
深入解读力扣154题:寻找旋转排序数组中的最小值 II(多种方法及详细ASCII图解)
深入解读力扣154题:寻找旋转排序数组中的最小值 II(多种方法及详细ASCII图解)
|
6月前
|
存储 算法 数据可视化