精选Hive高频面试题11道,附答案详细解析(好文收藏)(二)

简介: 精选Hive高频面试题11道,附答案详细解析

6. 为什么要对数据仓库分层?


  • 用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据。

  • 如果不分层的话,如果源业务系统的业务规则发生变化将会影响整个数据清洗过程,工作量巨大。

  • 通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一个白盒,每一层的处理逻辑都相对简单和容易理解,这样我们比较容易保证每一个步骤的正确性,当数据发生错误的时候,往往我们只需要局部调整某个步骤即可。

数据仓库详细介绍可查看:万字详解整个数据仓库建设体系


7. 使用过Hive解析JSON串吗


Hive处理json数据总体来说有两个方向的路走:


  1. 将json以字符串的方式整个入Hive表,然后通过使用UDF函数解析已经导入到hive中的数据,比如使用LATERAL VIEW json_tuple的方法,获取所需要的列名。


  1. 在导入之前将json拆成各个字段,导入Hive表的数据是已经解析过的。这将需要使用第三方的
    SerDe。


详细介绍可查看:Hive解析Json数组超全讲解


8. sort by 和 order by 的区别


order by 会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。


sort by不是全局排序,其在数据进入reducer前完成排序.


因此,如果用sort by进行排序,并且设置mapred.reduce.tasks>1, 则sort by只保证每个reducer的输出有序,不保证全局有序。


9. 数据倾斜怎么解决


数据倾斜问题主要有以下几种:


  1. 空值引发的数据倾斜
  2. 不同数据类型引发的数据倾斜
  3. 不可拆分大文件引发的数据倾斜
  4. 数据膨胀引发的数据倾斜
  5. 表连接时引发的数据倾斜
  6. 确实无法减少数据量引发的数据倾斜


以上倾斜问题的具体解决方案可查看:Hive千亿级数据倾斜解决方案


注意:对于 left join 或者 right join 来说,不会对关联的字段自动去除null值,对于 inner join 来说,会对关联的字段自动去除null值。


小伙伴们在阅读时注意下,在上面的文章(Hive千亿级数据倾斜解决方案)中,有一处sql出现了上述问题(举例的时候原本是想使用left join的,结果手误写成了join)。此问题由公众号读者发现,感谢这位读者指正。


10. Hive 小文件过多怎么解决


1. 使用 hive 自带的 concatenate 命令,自动合并小文件


使用方法:


#对于非分区表
alter table A concatenate;
#对于分区表
alter table B partition(day=20201224) concatenate;


注意:


1、concatenate 命令只支持 RCFILE 和 ORC 文件类型。


2、使用concatenate命令合并小文件时不能指定合并后的文件数量,但可以多次执行该命令。


3、当多次使用concatenate后文件数量不在变化,这个跟参数 mapreduce.input.fileinputformat.split.minsize=256mb 的设置有关,可设定每个文件的最小size。


2. 调整参数减少Map数量


设置map输入合并小文件的相关参数(执行Map前进行小文件合并):


在mapper中将多个文件合成一个split作为输入(CombineHiveInputFormat底层是Hadoop的CombineFileInputFormat方法):


set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; -- 默认


每个Map最大输入大小(这个值决定了合并后文件的数量):


set mapred.max.split.size=256000000;   -- 256M


一个节点上split的至少大小(这个值决定了多个DataNode上的文件是否需要合并):


set mapred.min.split.size.per.node=100000000;  -- 100M


一个交换机下split的至少大小(这个值决定了多个交换机上的文件是否需要合并):


set mapred.min.split.size.per.rack=100000000;  -- 100M

3. 减少Reduce的数量


reduce 的个数决定了输出的文件的个数,所以可以调整reduce的个数控制hive表的文件数量。


hive中的分区函数 distribute by 正好是控制MR中partition分区的,可以通过设置reduce的数量,结合分区函数让数据均衡的进入每个reduce即可:


#设置reduce的数量有两种方式,第一种是直接设置reduce个数
set mapreduce.job.reduces=10;
#第二种是设置每个reduce的大小,Hive会根据数据总大小猜测确定一个reduce个数
set hive.exec.reducers.bytes.per.reducer=5120000000; -- 默认是1G,设置为5G
#执行以下语句,将数据均衡的分配到reduce中
set mapreduce.job.reduces=10;
insert overwrite table A partition(dt)
select * from B
distribute by rand();


对于上述语句解释:如设置reduce数量为10,使用 rand(), 随机生成一个数 x % 10

这样数据就会随机进入 reduce 中,防止出现有的文件过大或过小。


4. 使用hadoop的archive将小文件归档


Hadoop Archive简称HAR,是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样在减少namenode内存使用的同时,仍然允许对文件进行透明的访问。


#用来控制归档是否可用
set hive.archive.enabled=true;
#通知Hive在创建归档时是否可以设置父目录
set hive.archive.har.parentdir.settable=true;
#控制需要归档文件的大小
set har.partfile.size=1099511627776;
使用以下命令进行归档:
ALTER TABLE A ARCHIVE PARTITION(dt='2021-05-07', hr='12');
对已归档的分区恢复为原文件:
ALTER TABLE A UNARCHIVE PARTITION(dt='2021-05-07', hr='12');


注意:


归档的分区可以查看不能 insert overwrite,必须先 unarchive

Hive 小文件问题具体可查看:解决hive小文件过多问题


11. Hive优化有哪些


1. 数据存储及压缩:


针对hive中表的存储格式通常有orc和parquet,压缩格式一般使用snappy。相比与textfile格式表,orc占有更少的存储。因为hive底层使用MR计算架构,数据流是hdfs到磁盘再到hdfs,而且会有很多次,所以使用orc数据格式和snappy压缩策略可以降低IO读写,还能降低网络传输量,这样在一定程度上可以节省存储,还能提升hql任务执行效率;


2. 通过调参优化:


并行执行,调节parallel参数;


调节jvm参数,重用jvm;


设置map、reduce的参数;开启strict mode模式;


关闭推测执行设置。


3. 有效地减小数据集将大表拆分成子表;结合使用外部表和分区表。


4. SQL优化


  • 大表对大表:尽量减少数据集,可以通过分区表,避免扫描全表或者全字段;
  • 大表对小表:设置自动识别小表,将小表放入内存中去执行。

Hive优化详细剖析可查看:Hive企业级性能优化


相关文章
|
1月前
|
存储 缓存 NoSQL
Redis常见面试题全解析
Redis面试高频考点全解析:从过期删除、内存淘汰策略,到缓存雪崩、击穿、穿透及BigKey问题,深入原理与实战解决方案,助你轻松应对技术挑战,提升系统性能与稳定性。(238字)
|
3月前
|
存储 安全 测试技术
Python面试题精选及解析
本文详解Python面试中的六大道经典问题,涵盖列表与元组区别、深浅拷贝、`__new__`与`__init__`、GIL影响、协程原理及可变与不可变类型,助你提升逻辑思维与问题解决能力,全面备战Python技术面试。
149 0
|
1月前
|
监控 Java 关系型数据库
面试性能测试总被刷?学员真实遇到的高频问题全解析!
面试常被性能测试题难住?其实考的不是工具,而是分析思维。从脚本编写到瓶颈定位,企业更看重系统理解与实战能力。本文拆解高频面试题,揭示背后考察逻辑,并通过真实项目训练,帮你构建性能测试完整知识体系,实现从“会操作”到“能解决问题”的跨越。
|
5月前
|
Web App开发 缓存 前端开发
浏览器常见面试题目及详细答案解析
本文围绕浏览器常见面试题及答案展开,深入解析浏览器组成、内核、渲染机制与缓存等核心知识点。内容涵盖浏览器的主要组成部分(如用户界面、呈现引擎、JavaScript解释器等)、主流浏览器内核及其特点、从输入URL到页面呈现的全过程,以及CSS加载对渲染的影响等。结合实际应用场景,帮助读者全面掌握浏览器工作原理,为前端开发和面试提供扎实的知识储备。
247 4
|
5月前
|
存储 安全 Java
2025 最新史上最全 Java 面试题独家整理带详细答案及解析
本文从Java基础、面向对象、多线程与并发等方面详细解析常见面试题及答案,并结合实际应用帮助理解。内容涵盖基本数据类型、自动装箱拆箱、String类区别,面向对象三大特性(封装、继承、多态),线程创建与安全问题解决方法,以及集合框架如ArrayList与LinkedList的对比和HashMap工作原理。适合准备面试或深入学习Java的开发者参考。附代码获取链接:[点此下载](https://pan.quark.cn/s/14fcf913bae6)。
3054 48
|
5月前
|
前端开发 JavaScript 开发者
2025 最新 100 道 CSS 面试题及答案解析续篇
本文整理了100道CSS面试题及其答案,涵盖CSS基础与进阶知识。内容包括CSS引入方式、盒模型、选择器优先级等核心知识点,并通过按钮、卡片、导航栏等组件封装实例,讲解单一职责原则、样式隔离、响应式设计等最佳实践。适合前端开发者巩固基础、备战面试或提升组件化开发能力。资源地址:[点击下载](https://pan.quark.cn/s/50438c9ee7c0)。
131 5
2025 最新 100 道 CSS 面试题及答案解析续篇
|
5月前
|
缓存 NoSQL Java
Java Redis 面试题集锦 常见高频面试题目及解析
本文总结了Redis在Java中的核心面试题,包括数据类型操作、单线程高性能原理、键过期策略及分布式锁实现等关键内容。通过Jedis代码示例展示了String、List等数据类型的操作方法,讲解了惰性删除和定期删除相结合的过期策略,并提供了Spring Boot配置Redis过期时间的方案。文章还探讨了缓存穿透、雪崩等问题解决方案,以及基于Redis的分布式锁实现,帮助开发者全面掌握Redis在Java应用中的实践要点。
317 6
|
5月前
|
NoSQL Java 微服务
2025 年最新 Java 面试从基础到微服务实战指南全解析
《Java面试实战指南:高并发与微服务架构解析》 本文针对Java开发者提供2025版面试技术要点,涵盖高并发电商系统设计、微服务架构实现及性能优化方案。核心内容包括:1)基于Spring Cloud和云原生技术的系统架构设计;2)JWT认证、Seata分布式事务等核心模块代码实现;3)数据库查询优化与高并发处理方案,响应时间从500ms优化至80ms;4)微服务调用可靠性保障方案。文章通过实战案例展现Java最新技术栈(Java 17/Spring Boot 3.2)的应用.
446 9
|
5月前
|
缓存 算法 NoSQL
校招 Java 面试高频常见知识点深度解析与实战案例详细分享
《2025校招Java面试核心指南》总结了Java技术栈的最新考点,涵盖基础语法、并发编程和云原生技术三大维度: 现代Java特性:重点解析Java 17密封类、Record类型及响应式Stream API,通过电商案例演示函数式数据处理 并发革命:对比传统线程池与Java 21虚拟线程,详解Reactor模式在秒杀系统中的应用及背压机制 云原生实践:提供Spring Boot容器化部署方案,分析Spring WebFlux响应式编程和Redis Cluster缓存策略。
147 0
|
5月前
|
设计模式 安全 Java
Java 基础知识面试题全解析之技术方案与应用实例详解
本内容结合Java 8+新特性与实际场景,涵盖函数式编程、Stream API、模块化、并发工具等技术。通过Lambda表达式、Stream集合操作、Optional空值处理、CompletableFuture异步编程等完整示例代码,助你掌握现代Java应用开发。附面试题解析与技术方案,提升实战能力。代码示例涵盖计算器、员工信息统计、用户查询、模块化系统设计等,助你轻松应对技术挑战。
166 9

推荐镜像

更多
  • DNS
  • 下一篇
    oss云网关配置