基于Kubernetes/K8S构建Jenkins持续集成平台(上)-1

简介: Jenkins的Master-Slave分布式构建

JenkinsMaster-Slave分布式构建


什么是Master-Slave分布式构建


2387773-20220307145829249-868998882.png


JenkinsMaster-Slave分布式构建,就是通过将构建过程分配到从属Slave节点上,从而减轻Master点的压力,而且可以同时构建多个,

有点类似负载均衡的概念。

 

 

如何实现Master-Slave分布式构建


1) 开启代理程序的TCP端口

Manage Jenkins -> Configure Global Security


2387773-20220307145914447-1323416637.png


2) 新建节点


Manage Jenkins—Manage Nodes—新建节点


2387773-20220307145931580-1742616211.png2387773-20220307150008804-1676949077.png2387773-20220307150021982-1955325155.png


下载好的jar包放到slave1  从节点的root目录里

然后还要安装git环境

yum -y install git

2387773-20220307150030426-1417881096.png

2387773-20220307150037117-1020886205.png


然后回到主节点查看状态是否连接:


2387773-20220307150226374-1934050714.png


然后进行测试一下:


2387773-20220307150239067-1551806303.png


配置运行节点slave1


2387773-20220307150245169-482419562.png

2387773-20220307150251650-2130174147.png


然后直接构建:


2387773-20220307150257742-1273490607.png


slave1服务器/root/jenkins上查看项目代码拉取


2387773-20220307150302363-221523371.png


使用流水线创造一下:


2387773-20220307152148061-686446546.png


这个要指定从节点所以有个slave1


2387773-20220307152155329-1922397141.png


node('slave1') {
    stage('pull code') {
        checkout([$class: 'GitSCM', branches: [[name: '*/master']], extensions: [], userRemoteConfigs: [[credentialsId: 'd5bb0e98-15f2-477f-8db7-2c33ecc6c644', url: 'git@20.0.0.20:root/tensquare_back.git']]])
    }
}


构建成功后可以去从节点服务器查看是否拉取过来

2387773-20220307152254132-1622836416.png



相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
1月前
|
Kubernetes Devops 应用服务中间件
基于 Azure DevOps 与阿里云 ACK 构建企业级 CI/CD 流水线
本文介绍如何结合阿里云 ACK 与 Azure DevOps 搭建自动化部署流程,涵盖集群创建、流水线配置、应用部署与公网暴露,助力企业高效落地云原生 DevOps 实践。
196 1
|
25天前
|
人工智能 Java API
Java与大模型集成实战:构建智能Java应用的新范式
随着大型语言模型(LLM)的API化,将其强大的自然语言处理能力集成到现有Java应用中已成为提升应用智能水平的关键路径。本文旨在为Java开发者提供一份实用的集成指南。我们将深入探讨如何使用Spring Boot 3框架,通过HTTP客户端与OpenAI GPT(或兼容API)进行高效、安全的交互。内容涵盖项目依赖配置、异步非阻塞的API调用、请求与响应的结构化处理、异常管理以及一些面向生产环境的最佳实践,并附带完整的代码示例,助您快速将AI能力融入Java生态。
240 12
|
1月前
|
存储 Kubernetes 网络安全
关于阿里云 Kubernetes 容器服务(ACK)添加镜像仓库的快速说明
本文介绍了在中国大陆地区因网络限制无法正常拉取 Docker 镜像的解决方案。作者所在的阿里云 Kubernetes 集群使用的是较旧版本的 containerd(1.2x),且无法直接通过 SSH 修改节点配置,因此采用了一种无需更改 Kubernetes 配置文件的方法。通过为 `docker.io` 添加 containerd 的镜像源,并使用脚本自动修改 containerd 配置文件中的路径错误(将错误的 `cert.d` 改为 `certs.d`),最终实现了通过多个镜像站点拉取镜像。作者还提供了一个可重复运行的脚本,用于动态配置镜像源。虽然该方案能缓解镜像拉取问题,
238 2
|
2月前
|
人工智能 自然语言处理 安全
Python构建MCP服务器:从工具封装到AI集成的全流程实践
MCP协议为AI提供标准化工具调用接口,助力模型高效操作现实世界。
515 1
|
4月前
|
存储 Kubernetes 监控
Docker与Kubernetes集成挑战及方案
面对这些挑战,并不存在一键解决方案。如同搭建灌溉系统需要考虑多种因素,集成Docker与Kubernetes也需要深思熟虑的规划、相当的技术知识和不断的调试。只有这样,才能建立起一个稳定、健康、高效的Docker-Kubernetes生态,让你的应用像花园中的植物一样繁荣生长。
225 63
|
2月前
|
供应链 监控 搜索推荐
35页PPT|零售行业自助数据分析方法论:指标体系构建平台集成、会员与商品精细化运营实践
在零售行业环境剧变的背景下,传统“人找货”模式正被“货找人”取代。消费者需求日益个性化,购买路径多元化,企业亟需构建统一的指标体系,借助BI平台实现数据驱动的精细化运营。本文从指标体系构建、平台集成到会员与商品运营实践,系统梳理零售经营分析的方法论,助力企业实现敏捷决策与业务闭环。
35页PPT|零售行业自助数据分析方法论:指标体系构建平台集成、会员与商品精细化运营实践
|
2月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1189 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
2月前
|
消息中间件 存储 数据采集
Apache InLong:构建10万亿级数据管道的全场景集成框架
Apache InLong(应龙)是一站式、全场景海量数据集成框架,支持数据接入、同步与订阅,具备自动、安全、可靠和高性能的数据传输能力。源自腾讯大数据团队,现为 Apache 顶级项目,广泛应用于广告、支付、社交等多个领域,助力企业构建高效数据分析与应用体系。
|
7月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
685 33
|
人工智能 定位技术 API
旅行规划太难做?5 分钟构建智能Agent,集成地图 MCP Server
MCP(Model Coordination Protocol)是由Anthropic公司提出的开源协议,旨在通过标准化交互方式解决AI大模型与外部数据源、工具的集成难题。阿里云百炼平台上线了业界首个全生命周期MCP服务,大幅降低Agent开发门槛,实现5分钟快速搭建智能体应用。本文介绍基于百炼平台“模型即选即用+MCP服务”模式,详细展示了如何通过集成高德地图MCP Server为智能体添加地图信息与天气查询能力,构建全面的旅行规划助手。方案涵盖智能体创建、模型配置、指令与技能设置等步骤,并提供清理资源的指导以避免费用产生。

热门文章

最新文章

推荐镜像

更多