Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI和LH)气溶胶指数数据集

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI和LH)气溶胶指数数据集

OFFL/L3_AER_AI

This dataset provides offline high-resolution imagery of the UV Aerosol Index (UVAI), also called the Absorbing Aerosol Index (AAI).


The AAI is based on wavelength-dependent changes in Rayleigh scattering in the UV spectral range for a pair of wavelengths. The difference between observed and modelled reflectance results in the AAI. When the AAI is positive, it indicates the presence of UV-absorbing aerosols like dust and smoke. It is useful for tracking the evolution of episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning.


The wavelengths used have very low ozone absorption, so unlike aerosol optical thickness measurements, AAI can be calculated in the presence of clouds. Daily global coverage is therefore possible.


For this L3 AER_AI product, the absorbing_aerosol_index is calculated with a pair of measurements at the 354 nm and 388 nm wavelengths. The COPERNICUS/S5P/OFFL/L3_SO2 product has the absorbing_aerosol_index calculated using the 340 nm and 380 nm wavelengths.

OFFL/L3_AER_AI


该数据集提供了紫外线气溶胶指数 (UVAI) 的离线高分辨率图像,也称为吸收气溶胶指数 (AAI)。


AAI 基于一对波长的 UV 光谱范围内瑞利散射的波长相关变化。观察到的和模拟的反射率之间的差异导致了 AAI。当 AAI 为正值时,表明存在吸收紫外线的气溶胶,如灰尘和烟雾。它可用于跟踪粉尘爆发、火山灰和生物质燃烧引起的偶发气溶胶羽流的演变。


所使用的波长对臭氧的吸收非常低,因此与气溶胶光学厚度测量不同,AAI 可以在有云的情况下计算。因此,每日全球报道是可能的。


对于此 L3 AER_AI 产品,吸收气溶胶指数是通过在 354 nm 和 388 nm 波长处进行的一对测量计算得出的。 COPERNICUS/S5P/OFFL/L3_SO2 产品具有使用 340 nm 和 380 nm 波长计算的吸收气溶胶指数。


OFFL L3 Product

To make our OFFL L3 products, we find areas within the product's bounding box with data using a command like this:

harpconvert --format hdf5 --hdf5-compression 9
-a 'absorbing_aerosol_index_validity>50;derive(datetime_stop {time})'
S5P_OFFL_L2__AER_AI_20181030T213916_20181030T232046_05427_01_010200_20181105T210529.nc
grid_info.h5


We then merge all the data into one large mosaic (area-averaging values for pixels that may have different values for different times). From the mosaic, we create a set of tiles containing orthorectified raster data.

Example harpconvert invocation for one tile:

harpconvert --format hdf5 --hdf5-compression 9
-a 'absorbing_aerosol_index_validity>50;derive(datetime_stop {time});
bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01);
keep(absorbing_aerosol_index,sensor_altitude,sensor_azimuth_angle,
     sensor_zenith_angle,solar_azimuth_angle,solar_zenith_angle)'
S5P_OFFL_L2__AER_AI_20181030T213916_20181030T232046_05427_01_010200_20181105T210529.nc
output.h5


Dataset Availability

2018-07-04T13:34:21 - 2021-09-04T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_AER_AI")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
absorbing_aerosol_index A measure of the prevalence of aerosols in the atmosphere, calculated by [this equation](https://earth.esa.int/web/sentinel/technical-guides/sentinel-5p/level-2/aerosol-index) using the 354/388 wavelength pair. -21 39
sensor_altitude Altitude of the satellite with respect to the geodetic sub-satellite point (WGS84). 828543 856078 m
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.098 66.87 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 8 88 degrees


* = Values are estimated

影像属性:

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.


代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_AI')
  .select('absorbing_aerosol_index')
  .filterDate('2019-06-01', '2019-06-06');
var band_viz = {
  min: -1,
  max: 2.0,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.addLayer(collection.mean(), band_viz, 'S5P Aerosol');
Map.setCenter(-118.82, 36.1, 5);


相关文章
|
30天前
|
Web App开发 人工智能 前端开发
Google 浏览器中的 AI 魔法 — window.ai
本文介绍了如何在 Chrome Canary 中启用并使用设备端 AI 功能。通过下载 Chrome Canary 并启用相关 API,你可以在本地运行 AI 模型,无需互联网连接。文章详细讲解了设置步骤、确认 AI 可用性的方法以及如何使用 `window.ai` 进行文本会话。虽然目前的性能和功能还有待提升,但这一技术为未来的前端开发和智能应用提供了无限可能。
60 0
|
3月前
|
机器学习/深度学习 人工智能 运维
2023 Google I/O Connect Shanghai 参会总结:云,AI 与 Web
2023 Google I/O Connect Shanghai 参会总结:云,AI 与 Web
2023 Google I/O Connect Shanghai 参会总结:云,AI 与 Web
|
3月前
|
人工智能 自然语言处理 安全
Google Gemini 1.5 Pro在AI竞赛中遥遥领先,挑战GPT-4o
Google Gemini 1.5 Pro在AI竞赛中遥遥领先,挑战GPT-4o
Google Gemini 1.5 Pro在AI竞赛中遥遥领先,挑战GPT-4o
|
3月前
|
人工智能 JSON 自然语言处理
我的Google Vertex AI实践经验分享
忙碌的开发者分享了使用Google Vertex AI的实践经验。从复杂的初始设置到微调模型时的手动资源分配,作者经历了种种挑战,包括高昂的成本与不足的文档支持。尽管如此,Vertex AI在图像识别和自然语言处理方面展现出强大能力。作者希望反馈能帮助Google改进服务,使之更加用户友好。
85 2
|
4月前
|
存储 数据库 Android开发
🔥Android Jetpack全解析!拥抱Google官方库,让你的开发之旅更加顺畅无阻!🚀
【7月更文挑战第28天】在Android开发中追求高效稳定的路径?Android Jetpack作为Google官方库集合,是你的理想选择。它包含多个独立又协同工作的库,覆盖UI到安全性等多个领域,旨在减少样板代码,提高开发效率与应用质量。Jetpack核心组件如LiveData、ViewModel、Room等简化了数据绑定、状态保存及数据库操作。引入Jetpack只需在`build.gradle`中添加依赖。例如,使用Room进行数据库操作变得异常简单,从定义实体到实现CRUD操作,一切尽在掌握之中。拥抱Jetpack,提升开发效率,构建高质量应用!
70 4
|
4月前
|
人工智能 自然语言处理 数据挖掘
详解:Google AI Gemini中文版本(基于API 开发实现对话)
谷歌旗下的人工智能应用Gemini,自问世以来凭借其强大的计算能力和高效的处理性能,迅速成为全球用户的宠儿。作为一款由世界顶尖科技公司开发的产品,Gemini不仅在语言处理、图像识别、数据分析等领域表现出色,还在多种复杂任务中展现了其卓越的智能决策能力。然而,由于网络限制等问题,国内用户往往无法直接访问和使用Gemini的网站,这也导致了许多技术爱好者和专业人士未能亲身体验这一先进技术所带来的便利和强大功能。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
Google gemini官网入口是什么_谷歌 AI gemini国内怎么使用
随着人工智能(AI)技术的迅猛发展,各大科技公司不断推出更为先进的AI模型,推动技术的边界。Google开发的Gemini便是其中的佼佼者。作为一款大型语言模型(LLM),Gemini旨在处理多种自然语言处理(NLP)任务,如文本生成、翻译、摘要和对话生成。Gemini结合了最新的研究成果和技术,显著提高了自然语言处理的准确性和效率。
|
5月前
|
Java 数据库连接
提升编程效率的利器: 解析Google Guava库之IO工具类(九)
提升编程效率的利器: 解析Google Guava库之IO工具类(九)
|
5月前
|
缓存 Java Maven
深入解析Google Guava库与Spring Retry重试框架
深入解析Google Guava库与Spring Retry重试框架
|
5月前
|
监控 安全 算法
提升编程效率的利器: 解析Google Guava库之RateLimiter优雅限流(十)
提升编程效率的利器: 解析Google Guava库之RateLimiter优雅限流(十)

推荐镜像

更多