Google Earth Engine ——数据全解析专辑(COPERNICUS/S2_SR)20154至今哨兵-2号(SR) 数据集

简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S2_SR)20154至今哨兵-2号(SR) 数据集

Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission supporting Copernicus Land Monitoring studies, including the monitoring of vegetation, soil and water cover, as well as observation of inland waterways and coastal areas.


The Sentinel-2 L2 data are downloaded from scihub. They were computed by running sen2cor. WARNING: ESA did not produce L2 data for all L1 assets, and earlier L2 coverage is not global.


The assets contain 12 UINT16 spectral bands representing SR scaled by 10000 (unlike in L1 data, there is no B10). There are also several more L2-specific bands (see band list for details). See the Sentinel-2 User Handbook for details. In addition, three QA bands are present where one (QA60) is a bitmask band with cloud mask information. For more details, see the full explanation of how cloud masks are computed.


EE asset ids for Sentinel-2 L2 assets have the following format: COPERNICUS/S2_SR/20151128T002653_20151128T102149_T56MNN. Here the first numeric part represents the sensing date and time, the second numeric part represents the product generation date and time, and the final 6-character string is a unique granule identifier indicating its UTM grid reference (see MGRS).

Clouds can be removed by using COPERNICUS/S2_CLOUD_PROBABILITY. See this tutorial explaining how to apply the cloud mask.

For more details on Sentinel-2 radiometric resolution, see this page.


Sentinel-2 是一个宽幅、高分辨率、多光谱成像任务,支持哥白尼土地监测研究,包括监测植被、土壤和水覆盖,以及观察内陆水道和沿海地区。

Sentinel-2 L2 数据从 scihub 下载。它们是通过运行 sen2cor 来计算的。警告:ESA 没有为所有 L1 资产生成 L2 数据,早期的 L2 覆盖范围不是全球性的。

资产包含 12 个 UINT16 光谱带,代表按 10000 缩放的 SR(与 L1 数据不同,没有 B10)。还有几个特定于 L2 的频段(有关详细信息,请参阅频段列表)。有关详细信息,请参阅 Sentinel-2 用户手册。此外,存在三个 QA 带,其中一个 (QA60) 是具有云掩码信息的位掩码带。有关更多详细信息,请参阅有关如何计算云掩码的完整说明。

Sentinel-2 L2 资产的 EE 资产 ID 具有以下格式:COPERNICUS/S2_SR/20151128T002653_20151128T102149_T56MNN。这里的第一个数字部分表示感应日期和时间,第二个数字部分表示产品生成日期和时间,最后的 6 个字符串是一个唯一的颗粒标识符,表示其 UTM 网格参考(参见 MGRS)。

可以使用 COPERNICUS/S2_CLOUD_PROBABILITY 去除云。请参阅本教程,解释如何应用云遮罩。

有关 Sentinel-2 辐射分辨率的更多详细信息,请参阅此页面。

Dataset Availability

2017-03-28T00:00:00 - 2021-09-04T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S2_SR")

Bands Table

Name Description Min Max Resolution Units Wavelength Scale
B1 Aerosols 60 meters 443.9nm (S2A) / 442.3nm (S2B) 0.0001
B2 Blue 10 meters 496.6nm (S2A) / 492.1nm (S2B) 0.0001
B3 Green 10 meters 560nm (S2A) / 559nm (S2B) 0.0001
B4 Red 10 meters 664.5nm (S2A) / 665nm (S2B) 0.0001
B5 Red Edge 1 20 meters 703.9nm (S2A) / 703.8nm (S2B) 0.0001
B6 Red Edge 2 20 meters 740.2nm (S2A) / 739.1nm (S2B) 0.0001
B7 Red Edge 3 20 meters 782.5nm (S2A) / 779.7nm (S2B) 0.0001
B8 NIR 10 meters 835.1nm (S2A) / 833nm (S2B) 0.0001
B8A Red Edge 4 20 meters 864.8nm (S2A) / 864nm (S2B) 0.0001
B9 Water vapor 60 meters 945nm (S2A) / 943.2nm (S2B) 0.0001
B11 SWIR 1 20 meters 1613.7nm (S2A) / 1610.4nm (S2B) 0.0001
B12 SWIR 2 20 meters 2202.4nm (S2A) / 2185.7nm (S2B) 0.0001
AOT Aerosol Optical Thickness 10 meters 0.001
WVP Water Vapor Pressure. The height the water would occupy if the vapor were condensed into liquid and spread evenly across the column. 10 meters cm 0.001
SCL Scene Classification Map (The "No Data" value of 0 is masked out) 1 11 20 meters 0
TCI_R True Color Image, Red channel 10 meters 0
TCI_G True Color Image, Green channel 10 meters 0
TCI_B True Color Image, Blue channel 10 meters 0
MSK_CLDPRB Cloud Probability Map (missing in some products) 0 100 20 meters 0
MSK_SNWPRB Snow Probability Map (missing in some products) 0 100 10 meters 0
QA10 Always empty 10 meters 0
QA20 Always empty 20 meters 0
QA60 Cloud mask 60 meters 0
QA60 Bitmask
  • Bit 10: Opaque clouds
    • 0: No opaque clouds
    • 1: Opaque clouds present
  • Bit 11: Cirrus clouds
    • 0: No cirrus clouds
    • 1: Cirrus clouds present


Class Table: SCL

Value Color Color Value Description
1 #ff0004 Saturated or defective
2 #868686 Dark Area Pixels
3 #774b0a Cloud Shadows
4 #10d22c Vegetation
5 #ffff52 Bare Soils
6 #0000ff Water
7 #818181 Clouds Low Probability / Unclassified
8 #c0c0c0 Clouds Medium Probability
9 #f1f1f1 Clouds High Probability
10 #bac5eb Cirrus
11 #52fff9 Snow / Ice


影像属性:

Name Type Description
AOT_RETRIEVAL_ACCURACY Double Accuracy of Aerosol Optical thickness model
CLOUDY_PIXEL_PERCENTAGE Double Granule-specific cloudy pixel percentage taken from the original metadata
CLOUD_COVERAGE_ASSESSMENT Double Cloudy pixel percentage for the whole archive that contains this granule. Taken from the original metadata
CLOUDY_SHADOW_PERCENTAGE Double Percentage of pixels classified as cloud shadow
DARK_FEATURES_PERCENTAGE Double Percentage of pixels classified as dark features or shadows
DATASTRIP_ID String Unique identifier of the datastrip Product Data Item (PDI)
DATATAKE_IDENTIFIER String Uniquely identifies a given Datatake. The ID contains the Sentinel-2 satellite, start date and time, absolute orbit number, and processing baseline.
DATATAKE_TYPE String MSI operation mode
DEGRADED_MSI_DATA_PERCENTAGE Double Percentage of degraded MSI and ancillary data
FORMAT_CORRECTNESS String Synthesis of the On-Line Quality Control (OLQC) checks performed at granule (Product_Syntax) and datastrip (Product Syntax and DS_Consistency) levels
GENERAL_QUALITY String Synthesis of the OLQC checks performed at the datastrip level (Relative_Orbit_Number)
GENERATION_TIME Double Product generation time
GEOMETRIC_QUALITY String Synthesis of the OLQC checks performed at the datastrip level (Attitude_Quality_Indicator)
GRANULE_ID String Unique identifier of the granule PDI (PDI_ID)
HIGH_PROBA_CLOUDS_PERCENTAGE Double Percentage of pixels classified as high probability clouds
MEAN_INCIDENCE_AZIMUTH_ANGLE_B1 Double Mean value containing viewing incidence azimuth angle average for band B1 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B2 Double Mean value containing viewing incidence azimuth angle average for band B2 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B3 Double Mean value containing viewing incidence azimuth angle average for band B3 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B4 Double Mean value containing viewing incidence azimuth angle average for band B4 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B5 Double Mean value containing viewing incidence azimuth angle average for band B5 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B6 Double Mean value containing viewing incidence azimuth angle average for band B6 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B7 Double Mean value containing viewing incidence azimuth angle average for band B7 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B8 Double Mean value containing viewing incidence azimuth angle average for band B8 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B8A Double Mean value containing viewing incidence azimuth angle average for band B8a and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B9 Double Mean value containing viewing incidence azimuth angle average for band B9 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B10 Double Mean value containing viewing incidence azimuth angle average for band B10 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B11 Double Mean value containing viewing incidence azimuth angle average for band B11 and for all detectors
MEAN_INCIDENCE_AZIMUTH_ANGLE_B12 Double Mean value containing viewing incidence azimuth angle average for band B12 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B1 Double Mean value containing viewing incidence zenith angle average for band B1 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B2 Double Mean value containing viewing incidence zenith angle average for band B2 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B3 Double Mean value containing viewing incidence zenith angle average for band B3 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B4 Double Mean value containing viewing incidence zenith angle average for band B4 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B5 Double Mean value containing viewing incidence zenith angle average for band B5 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B6 Double Mean value containing viewing incidence zenith angle average for band B6 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B7 Double Mean value containing viewing incidence zenith angle average for band B7 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B8 Double Mean value containing viewing incidence zenith angle average for band B8 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B8A Double Mean value containing viewing incidence zenith angle average for band B8a and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B9 Double Mean value containing viewing incidence zenith angle average for band B9 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B10 Double Mean value containing viewing incidence zenith angle average for band B10 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B11 Double Mean value containing viewing incidence zenith angle average for band B11 and for all detectors
MEAN_INCIDENCE_ZENITH_ANGLE_B12 Double Mean value containing viewing incidence zenith angle average for band B12 and for all detectors
MEAN_SOLAR_AZIMUTH_ANGLE Double Mean value containing sun azimuth angle average for all bands and detectors
MEAN_SOLAR_ZENITH_ANGLE Double Mean value containing sun zenith angle average for all bands and detectors
MEDIUM_PROBA_CLOUDS_PERCENTAGE Double Percentage of pixels classified as medium probability clouds
MGRS_TILE String US-Military Grid Reference System (MGRS) tile
NODATA_PIXEL_PERCENTAGE Double Percentage of No Data pixels
NOT_VEGETATED_PERCENTAGE Double Percentage of pixels classified as non-vegetated
PROCESSING_BASELINE String Configuration baseline used at the time of the product generation in terms of processor software version and major Ground Image Processing Parameters (GIPP) version
PRODUCT_ID String The full id of the original Sentinel-2 product
RADIATIVE_TRANSFER_ACCURACY Double Accuracy of radiative transfer model
RADIOMETRIC_QUALITY String Based on the OLQC reports contained in the Datastrips/QI_DATA with RADIOMETRIC_QUALITY checklist name
REFLECTANCE_CONVERSION_CORRECTION Double Earth-Sun distance correction factor
SATURATED_DEFECTIVE_PIXEL_PERCENTAGE Double Percentage of saturated or defective pixels
SENSING_ORBIT_DIRECTION String Imaging orbit direction
SENSING_ORBIT_NUMBER Double Imaging orbit number
SENSOR_QUALITY String Synthesis of the OLQC checks performed at granule (Missing_Lines, Corrupted_ISP, and Sensing_Time) and datastrip (Degraded_SAD and Datation_Model) levels
SOLAR_IRRADIANCE_B1 Double Mean solar exoatmospheric irradiance for band B1
SOLAR_IRRADIANCE_B2 Double Mean solar exoatmospheric irradiance for band B2
SOLAR_IRRADIANCE_B3 Double Mean solar exoatmospheric irradiance for band B3
SOLAR_IRRADIANCE_B4 Double Mean solar exoatmospheric irradiance for band B4
SOLAR_IRRADIANCE_B5 Double Mean solar exoatmospheric irradiance for band B5
SOLAR_IRRADIANCE_B6 Double Mean solar exoatmospheric irradiance for band B6
SOLAR_IRRADIANCE_B7 Double Mean solar exoatmospheric irradiance for band B7
SOLAR_IRRADIANCE_B8 Double Mean solar exoatmospheric irradiance for band B8
SOLAR_IRRADIANCE_B8A Double Mean solar exoatmospheric irradiance for band B8a
SOLAR_IRRADIANCE_B9 Double Mean solar exoatmospheric irradiance for band B9
SOLAR_IRRADIANCE_B10 Double Mean solar exoatmospheric irradiance for band B10
SOLAR_IRRADIANCE_B11 Double Mean solar exoatmospheric irradiance for band B11
SOLAR_IRRADIANCE_B12 Double Mean solar exoatmospheric irradiance for band B12
SNOW_ICE_PERCENTAGE Double Percentage of pixels classified as snow or ice
SPACECRAFT_NAME String Sentinel-2 spacecraft name: Sentinel-2A, Sentinel-2B
THIN_CIRRUS_PERCENTAGE Double Percentage of pixels classified as thin cirrus clouds
UNCLASSIFIED_PERCENTAGE Double Percentage of unclassified pixels
VEGETATION_PERCENTAGE Double Percentage of pixels classified as vegetation
WATER_PERCENTAGE Double Percentage of pixels classified as water
WATER_VAPOUR_RETRIEVAL_ACCURACY Double Declared accuracy of the Water Vapor model


代码:

function maskS2clouds(image) {
  var qa = image.select('QA60');
  // Bits 10 and 11 are clouds and cirrus, respectively.
  var cloudBitMask = 1 << 10;
  var cirrusBitMask = 1 << 11;
  // Both flags should be set to zero, indicating clear conditions.去云操作
  var mask = qa.bitwiseAnd(cloudBitMask).eq(0)
      .and(qa.bitwiseAnd(cirrusBitMask).eq(0));
  return image.updateMask(mask).divide(10000);
}
// Map the function over one year of data and take the median.
// Load Sentinel-2 TOA reflectance data.
var dataset = ee.ImageCollection('COPERNICUS/S2')
                  .filterDate('2018-01-01', '2018-06-30')
                  // Pre-filter to get less cloudy granules.
                  .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
                  .map(maskS2clouds);
var rgbVis = {
  min: 0.0,
  max: 0.3,
  bands: ['B4', 'B3', 'B2'],
};
Map.setCenter(-9.1695, 38.6917, 12);
Map.addLayer(dataset.median(), rgbVis, 'RGB');


影像:


相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
Google DeepMind新产物: 行星级卫星嵌入数据集(10m)光学+雷达+DEM+climate...
Google 推出 Earth Engine 卫星嵌入数据集,利用 AI 将一年的多源卫星数据压缩至每个 10 米像素,实现高效地理空间分析。基于 AlphaEarth Foundations 模型,该数据集提供 64 维嵌入向量,支持相似性搜索、变化检测、自动聚类和精准分类,助力环境研究与应用。
472 0
|
11月前
|
数据采集 JSON 数据可视化
JSON数据解析实战:从嵌套结构到结构化表格
在信息爆炸的时代,从杂乱数据中提取精准知识图谱是数据侦探的挑战。本文以Google Scholar为例,解析嵌套JSON数据,提取文献信息并转换为结构化表格,通过Graphviz制作技术关系图谱,揭示文献间的隐秘联系。代码涵盖代理IP、请求头设置、JSON解析及可视化,提供完整实战案例。
694 4
JSON数据解析实战:从嵌套结构到结构化表格
|
11月前
|
JSON 监控 网络协议
Bilibili直播信息流:连接方法与数据解析
本文详细介绍了自行实现B站直播WebSocket连接的完整流程。解析了基于WebSocket的应用层协议结构,涵盖认证包构建、心跳机制维护及数据包解析步骤,为开发者定制直播数据监控提供了完整技术方案。
1199 9
|
11月前
|
缓存 监控 搜索推荐
【实战解析】smallredbook.item_get_video API:小红书视频数据获取与电商应用指南
本文介绍小红书官方API——`smallredbook.item_get_video`的功能与使用方法。该接口可获取笔记视频详情,包括无水印直链、封面图、时长、文本描述、标签及互动数据等,并支持电商场景分析。调用需提供`key`、`secret`和`num_iid`参数,返回字段涵盖视频链接、标题、标签及用户信息等。同时,文章提供了电商实战技巧,如竞品监控与个性化推荐,并列出合规注意事项及替代方案对比。最后解答了常见问题,如笔记ID获取与视频链接时效性等。
|
11月前
|
存储 缓存 监控
如何高效爬取天猫商品数据?官方API与非官方接口全解析
本文介绍两种天猫商品数据爬取方案:官方API和非官方接口。官方API合法合规,适合企业长期使用,需申请企业资质;非官方接口适合快速验证需求,但需应对反爬机制。详细内容涵盖开发步骤、Python实现示例、反爬策略、数据解析与存储、注意事项及扩展应用场景。推荐工具链包括Playwright、aiohttp、lxml等。如需进一步帮助,请联系作者。
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
440 2
|
11月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
1107 29
|
11月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
467 4
|
11月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
11月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。

热门文章

最新文章

推荐镜像

更多