Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI)紫外线气溶胶指数 (UVAI) 数据集

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI)紫外线气溶胶指数 (UVAI) 数据集

OFFL/L3_AER_LH

This dataset provides offline high-resolution imagery of the UV Aerosol Index (UVAI), also called the Absorbing Layer Height (ALH).


The ALH is very sensitive to cloud contamination. However, aerosols and clouds can be difficult to distinguish, and ALH is computed for all FRESCO effective cloud fractions smaller than 0.05. Cloud masks are available from FRESCO and VIIRS, and are strongly recommended to filter for residual clouds. A sunglint mask is also available to screen sunglint regions, which are not filtered beforehand.

It is known that high surface albedos negatively influence the ALH, biasing the ALH towards the surface. In general, the ALH over (dark) oceans is considered reliable to within the requirement of 1000 m or 100 hPa. Over land, especially bright surfaces, the accuracy may be lower, and the use of the ALH product over bright surfaces like deserts is not advisable.


For this L3 AER_LH product, the aerosol_mid_pressure is calculated with a pair of measurements at the 354 nm and 388 nm wavelengths. The COPERNICUS/S5P/OFFL/L3_SO2 product has the absorbing_aerosol_index calculated using the 340 nm and 380 nm wavelengths.


该数据集提供了紫外线气溶胶指数 (UVAI) 的离线高分辨率图像,也称为吸收层高度 (ALH)。


ALH 对云污染非常敏感。然而,气溶胶和云很难区分,ALH 是针对所有小于 0.05 的 FRESCO 有效云分数计算的。 FRESCO 和 VIIRS 提供云遮罩,强烈建议过滤残留云。也可使用阳光遮罩来筛选未预先过滤的阳光区域。


众所周知,高表面反照率会对 ALH 产生负面影响,使 ALH 偏向表面。一般而言,(暗)海洋上的 ALH 在 1000 m 或 100 hPa 的要求内被认为是可靠的。在陆地上,尤其是在明亮的表面上,精度可能会较低,并且不建议在沙漠等明亮的表面上使用 ALH 产品。


对于此 L3 AER_LH 产品,使用 354 nm 和 388 nm 波长处的一对测量值计算 aerosol_mid_pressure。 COPERNICUS/S5P/OFFL/L3_SO2 产品具有使用 340 nm 和 380 nm 波长计算的吸收气溶胶指数。


OFFL L3 Product

To make our OFFL L3 products, we find areas within the product's bounding box with data using a command like this:

harpconvert --format hdf5 --hdf5-compression 9
-a 'aerosol_height_validity>50;derive(datetime_stop {time})'
S5P_OFFL_L2__AER_LH_20190404T042423_20190404T060554_07630_01_010300_20190410T062552.nc
grid_info.h5


We then merge all the data into one large mosaic (area-averaging values for pixels that may have different values for different times). From the mosaic, we create a set of tiles containing orthorectified raster data.


Example harpconvert invocation for one tile:

harpconvert --format hdf5 --hdf5-compression 9
-a 'aerosol_height_validity>50;derive(datetime_stop {time});
bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01);
keep(aerosol_height,aerosol_pressure,aerosol_optical_depth,
     sensor_zenith_angle,sensor_azimuth_angle,solar_azimuth_angle,solar_zenith_angle)'
S5P_OFFL_L2__AER_LH_20190404T042423_20190404T060554_07630_01_010300_20190410T062552.nc
output.h5


Sentinel-5 Precursor

Sentinel-5 Precursor is a satellite launched on 13 October 2017 by the European Space Agency to monitor air pollution. The onboard sensor is frequently referred to as Tropomi (TROPOspheric Monitoring Instrument).

All of the S5P datasets, except CH4, have two versions: Near Real-Time (NRTI) and Offline (OFFL). CH4 is available as OFFL only. The NRTI assets cover a smaller area than the OFFL assets, but appear more quickly after acquisition. The OFFL assets contain data from a single orbit (which, due to half the earth being dark, contains data only for a single hemisphere).

Because of noise on the data, negative vertical column values are often observed in particular over clean regions or for low SO2 emissions. It is recommended not to filter these values except for outliers, i.e. for vertical columns lower than -0.001 mol/m^2.

The original Sentinel 5P Level 2 (L2) data is binned by time, not by latitude/longitude. To make it possible to ingest the data into Earth Engine, each Sentinel 5P L2 product is converted to L3, keeping a single grid per orbit (that is, no aggregation across products is performed).

Source products spanning the antimeridian are ingested as two Earth Engine assets, with suffixes _1 and _2.

The conversion to L3 is done by the harpconvert tool using the bin_spatial operation. The source data is filtered to remove pixels with QA values less than:

  • 80% for AER_AI
  • 75% for the tropospheric_NO2_column_number_density band of NO2
  • 50% for all other datasets except for O3 and SO2

The O3_TCL product is ingested directly (without running harpconvert).

Dataset Availability

2018-07-04T13:34:21 - 2021-09-04T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_AER_LH")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
aerosol_height The aerosol layer pressure is converted into an aerosol layer altitude using an appropriate temperature profile, i.e. the temperature profile used in the retrieval. The value is given relative to the geoid. -78.91 69370.95 m
aerosol_pressure Pressure of an aerosol layer with an assumed pressure thickness of (currently) 50 hPa and a constant aerosol volume extinction coefficient and single scattering albedo. 2.06 103896.24 Pa
aerosol_optical_depth Aerosol optical thickness τ of the assumed aerosol layer. The optical thickness holds for 760 nm. -0.6 11.56 Pa
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.098 66.87 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 12.93 74.7 degrees

* = Values are estimated


影像属性:

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.


代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_LH')
                    .select('aerosol_height')
                    .filterDate('2019-06-01', '2019-06-05');
var visualization = {
  min: 0,
  max: 6000,
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.setCenter(44.09, 24.27, 4);
Map.addLayer(collection.mean(), visualization, 'S5P Aerosol Height');


相关文章
|
20天前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
18天前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
45 6
|
19天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
11天前
|
人工智能 自然语言处理 关系型数据库
从数据到智能,一站式带你了解 Data+AI 精选解决方案、特惠权益
从 Data+AI 精选解决方案、特惠权益等,一站式带你了解阿里云瑶池数据库经典的AI产品服务与实践。
|
14天前
|
存储 人工智能 大数据
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
19天前
|
关系型数据库 分布式数据库 数据库
云栖大会|从数据到决策:AI时代数据库如何实现高效数据管理?
在2024云栖大会「海量数据的高效存储与管理」专场,阿里云瑶池讲师团携手AMD、FunPlus、太美医疗科技、中石化、平安科技以及小赢科技、迅雷集团的资深技术专家深入分享了阿里云在OLTP方向的最新技术进展和行业最佳实践。
|
27天前
|
人工智能 开发者
通义灵码一周年数据报:你的 AI 编码助手身份标签是什么?
通义灵码一周年数据报,等你来开AI编码身份标签。
48 3
|
1月前
|
机器学习/深度学习 人工智能 算法
"拥抱AI规模化浪潮:从数据到算法,解锁未来无限可能,你准备好迎接这场技术革命了吗?"
【10月更文挑战第14天】本文探讨了AI规模化的重要性和挑战,涵盖数据、算法、算力和应用场景等方面。通过使用Python和TensorFlow的示例代码,展示了如何训练并应用一个基本的AI模型进行图像分类,强调了AI规模化在各行业的广泛应用前景。
31 5
|
1月前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
46 3
|
1月前
|
Web App开发 人工智能 前端开发
Google 浏览器中的 AI 魔法 — window.ai
本文介绍了如何在 Chrome Canary 中启用并使用设备端 AI 功能。通过下载 Chrome Canary 并启用相关 API,你可以在本地运行 AI 模型,无需互联网连接。文章详细讲解了设置步骤、确认 AI 可用性的方法以及如何使用 `window.ai` 进行文本会话。虽然目前的性能和功能还有待提升,但这一技术为未来的前端开发和智能应用提供了无限可能。
64 0

热门文章

最新文章

推荐镜像

更多
下一篇
无影云桌面