Google Earth Engine ——数据全解析专辑(CSP/ERGo/1_0/Global/ALOS_landforms)ALOS 地貌数据集

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Google Earth Engine ——数据全解析专辑(CSP/ERGo/1_0/Global/ALOS_landforms)ALOS 地貌数据集

The ALOS Landform dataset provides landform classes created by combining the Continuous Heat-Insolation Load Index (ALOS CHILI) and the multi-scale Topographic Position Index (ALOS mTPI) datasets. It is based on the 30m "AVE" band of JAXA's ALOS DEM (available in EE as JAXA/ALOS/AW3D30_V1_1).

 

The Conservation Science Partners (CSP) Ecologically Relevant Geomorphology (ERGo) Datasets, Landforms and Physiography contain detailed, multi-scale data on landforms and physiographic (aka land facet) patterns. Although there are many potential uses of these data, the original purpose for these data was to develop an ecologically relevant classification and map of landforms and physiographic classes that are suitable for climate adaptation planning. Because there is large uncertainty associated with future climate conditions and even more uncertainty around ecological responses, providing information about what is unlikely to change offers a strong foundation for managers to build robust climate adaptation plans. The quantification of these features of the landscape is sensitive to the resolution, so we provide the highest resolution possible given the extent and characteristics of a given index.


ALOS 地貌数据集提供了通过组合连续热辐射负荷指数 (ALOS CHILI) 和多尺度地形位置指数 (ALOS mTPI) 数据集而创建的地貌类。它基于 JAXA 的 ALOS DEM(在 EE 中作为 JAXA/ALOS/AW3D30_V1_1 可用)的 30m“AVE”频段。


保护科学合作伙伴 (CSP) 生态相关地貌学 (ERGo) 数据集、地貌和地貌包含有关地貌和地貌(又名土地面)模式的详细的多尺度数据。尽管这些数据有许多潜在用途,但这些数据的最初目的是开发适合气候适应规划的地貌和地貌类别的生态相关分类和地图。由于未来气候条件存在很大的不确定性,生态响应的不确定性甚至更大,因此提供有关不太可能发生变化的信息为管理者制定稳健的气候适应计划提供了坚实的基础。景观的这些特征的量化对分辨率很敏感,因此在给定指数的范围和特征的情况下,我们提供可能的最高分辨率。


Dataset Availability

2006-01-24T00:00:00 - 2011-05-13T00:00:00

Dataset Provider

Conservation Science Partners

Collection Snippet

ee.Image("CSP/ERGo/1_0/Global/ALOS_landforms")

Resolution

90 meters

Bands Table

Name Description
constant ALOS-derived landform classes


Class Table: constant

Value Color Color Value Description
11 #141414 Peak/ridge (warm)
12 #383838 Peak/ridge
13 #808080 Peak/ridge (cool)
14 #EBEB8F Mountain/divide
15 #F7D311 Cliff
21 #AA0000 Upper slope (warm)
22 #D89382 Upper slope
23 #DDC9C9 Upper slope (cool)
24 #DCCDCE Upper slope (flat)
31 #1C6330 Lower slope (warm)
32 #68AA63 Lower slope
33 #B5C98E Lower slope (cool)
34 #E1F0E5 Lower slope (flat)
41 #a975ba Valley
42 #6f198c Valley (narrow)


数据引用:

Theobald, D. M., Harrison-Atlas, D., Monahan, W. B., & Albano, C. M. (2015). Ecologically-relevant maps of landforms and physiographic diversity for climate adaptation planning. PloS one, 10(12), e0143619

代码:

var dataset = ee.Image('CSP/ERGo/1_0/Global/ALOS_landforms');
var landforms = dataset.select('constant');
var landformsVis = {
  min: 11.0,
  max: 42.0,
  palette: [
    '141414', '383838', '808080', 'EBEB8F', 'F7D311', 'AA0000', 'D89382',
    'DDC9C9', 'DCCDCE', '1C6330', '68AA63', 'B5C98E', 'E1F0E5', 'a975ba',
    '6f198c'
  ],
};
Map.setCenter(-105.58, 40.5498, 11);
Map.addLayer(landforms, landformsVis, 'Landforms');


相关文章
|
8天前
|
数据采集 前端开发 API
SurfGen爬虫:解析HTML与提取关键数据
SurfGen爬虫:解析HTML与提取关键数据
|
13天前
|
数据采集 监控 搜索推荐
深度解析淘宝商品详情API接口:解锁电商数据新维度,驱动业务增长
淘宝商品详情API接口,是淘宝开放平台为第三方开发者提供的一套用于获取淘宝、天猫等电商平台商品详细信息的应用程序接口。该接口涵盖了商品的基本信息(如标题、价格、图片)、属性参数、库存状况、销量评价、物流信息等,是电商企业实现商品管理、市场分析、营销策略制定等功能的得力助手。
|
23天前
|
搜索推荐 API 开发者
深度解析:利用商品详情 API 接口实现数据获取与应用
在电商蓬勃发展的今天,数据成为驱动业务增长的核心。商品详情API接口作为连接海量商品数据的桥梁,帮助运营者、商家和开发者获取精准的商品信息(如价格、描述、图片、评价等),优化策略、提升用户体验。通过理解API概念、工作原理及不同平台特点,掌握获取权限、构建请求、处理响应和错误的方法,可以将数据应用于商品展示、数据分析、竞品分析和个性化推荐等场景,助力电商创新与发展。未来,随着技术进步,API接口将与人工智能、大数据深度融合,带来更多变革。
62 3
|
27天前
|
存储 搜索推荐 大数据
数据大爆炸:解析大数据的起源及其对未来的启示
数据大爆炸:解析大数据的起源及其对未来的启示
92 15
数据大爆炸:解析大数据的起源及其对未来的启示
|
1月前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
53 0
|
2月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
2月前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。

推荐镜像

更多