最小堆最大堆了解吗?一文了解堆在前端中的应用(一)

简介: 在下面的这篇文章中,将讲解堆的基础知识,并手动地用 js 来构建一个最小堆,同时剖析几道经典的 leetcode 算法题。

⚡序言


我们都知道树是一个数据结构,但可能很少听到堆这个数据结构。其实,堆就是一种特殊的完全二叉树。而对于前端来说,我们通常了解最大堆和最小堆,也经常用最大堆和最小堆来解决各种问题。比如,数组中的第K个最大元素、文档中前K个高频元素等等。

在下面的这篇文章中,将讲解堆的基础知识,并手动地用 js 来构建一个最小堆,同时剖析几道经典的 leetcode 算法题。

接下来开始进入本文的讲解~🔥


🦘一、堆是什么?


  • 堆是一种特殊的 完全二叉树 ,完全二叉树意味着每个节点都有两个孩子节点
  • 最大堆:所有的节点都 大于等于≥ 它的子节点;
  • 最小堆:所有的节点都 小于等于≤ 它的子节点。


🐥二、JS中的堆


  • JS 通常用数组来表示堆。
  • 左侧节点的位置是 2*index+1
  • 右侧节点的位置是 2*index+2
  • 父节点位置是 (index - 1) / 2


🐝三、堆的应用


  • 堆能够高效、快速地找出最大值最小值,时间复杂度 O(1)
  • 在开发中,有时候我们可能会想要找到一个数组中的最大或者最小元素,而堆,就可以找出第K个最大(小)元素


🐈四、构建一个最小堆


1. 定义

从上面的小知识中我们可以了解到,对于最小堆来说,它的所有节点都小于等于它的子节点。接下来我们来看堆这个数据结构的一些常见实现方法。


2. 方法

方法 含义
swap() 交换两个节点的位置
getParentIndex() 获取父节点的位置
getLeftIndex() 获取左侧子节点的位置
getRightIndex() 获取右侧子节点的位置
shiftUp() 进行上移操作
shiftDown() 进行下移操作
insert() 插入节点的值
pop() 删除堆顶操作
peek() 获取堆顶的值
size() 获取堆的大小


3. 用js代码实现最小堆


(1)初始化一个堆

首先我们需要先来定义一个空数组,这个数组用来存放一个堆。具体代码如下:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
}
复制代码


(2)交换位置swap()

初始化完一个堆之后,如果想要实现上下移操作,我们时不时的还需要对两个节点进行位置交换。那么我们再来写一个交换节点位置的方法。具体代码如下:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
    //交换节点i1和i2之间的位置
    swap(i1, i2){
        const temp = this.heap[i1];
        this.heap[i1] = this.heap[i2];
        this.heap[i2] = temp;
    }
}
复制代码


(3)获取父节点的位置getParentIndex()

上面我们讲到,父节点的位置是在 (index - 1) / 2 。 因此,我们需要传入当前节点的值索引 index ,来进行一个地板除操作,获取具体的父节点位置。具体代码如下:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
    //交换节点i1和i2之间的位置
    swap(i1, i2){
        const temp = this.heap[i1];
        this.heap[i1] = this.heap[i2];
        this.heap[i2] = temp;
    }
    //获取父节点的位置
    getParentIndex(i){
        return Math.floor((i - 1)/2);
        //也可以用以下这种右移操作的方法
        //return (i - 1) >> 1;
    }
}
复制代码


(4)获取左侧子节点的位置getLeftIndex()

对于左侧子节点来说,其索引为 2 * index + 1 ,也就是说,它是 当前节点的索引值的2倍 + 1具体实现代码如下:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
    //交换节点i1和i2之间的位置
    swap(i1, i2){
        const temp = this.heap[i1];
        this.heap[i1] = this.heap[i2];
        this.heap[i2] = temp;
    }
    //获取父节点的位置
    getParentIndex(i){
        return Math.floor((i - 1)/2);
        //也可以用以下这种右移操作的方法
        //return (i - 1) >> 1;
    }
    //获取左侧子节点,i为当前节点的索引
    getLeftIndex(i){
        return i * 2 + 1;
    }
}
复制代码


(5)获取右侧子节点的位置getRightIndex()

对于右侧子节点来说,其索引为 2 * index + 2 ,也就是说,它是 当前节点的索引值的2倍 + 2具体实现代码如下:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
    //交换节点i1和i2之间的位置
    swap(i1, i2){
        const temp = this.heap[i1];
        this.heap[i1] = this.heap[i2];
        this.heap[i2] = temp;
    }
    //获取父节点的位置
    getParentIndex(i){
        return Math.floor((i - 1)/2);
        //也可以用以下这种右移操作的方法
        //return (i - 1) >> 1;
    }
    //获取左侧子节点,i为当前节点的索引
    getLeftIndex(i){
        return i * 2 + 1;
    }
    //获取右侧子节点,i为当前节点的索引
    getRightIndex(i){
        return i * 2 + 2;
    }
}
复制代码


(6)进行上移操作shiftUp()

上面我们实现了获取父节点等获取各种索引的操作,现在,我们来实现上移操作。

对于上移操作来说,实现思路如下:

  • 先判断当前节点的位置是否在堆的顶点处,如果是,则不进行上移操作;如果否,则继续进行比较;
  • 获取父节点的位置索引,获取索引的目的是为了获取该索引的具体值;
  • 将当前节点的值与父节点的值进行对比,如果父节点的值大于当前节点的值,则进行上移操作;
  • 递归进行上移操作,直到到达堆顶为止。

下面给出具体的代码实现方法:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
    //交换节点i1和i2之间的位置
    swap(i1, i2){
        const temp = this.heap[i1];
        this.heap[i1] = this.heap[i2];
        this.heap[i2] = temp;
    }
    //获取父节点的位置
    getParentIndex(i){
        return Math.floor((i - 1)/2);
        //也可以用以下这种右移操作的方法
        //return (i - 1) >> 1;
    }
    //shiftUp进行上移操作
    shiftUp(index){
        //如果在堆的顶点处,则不进行上移操作,直接返回结果
        if(index === 0){
            return;
        }
        //获取父节点(即获取当前节点的父节点的值,且每个节点的父节点只有一个)
        const parentIndex = this.getParentIndex(index);
        //判断如果堆的父节点如果大于子节点,则进行位置交换
        if(this.heap[parentIndex] > this.heap[index]){
            this.swap(parentIndex, index);
            //交换完成之后,继续递归进行上移操作
            this.shinftUp(parentIndex);
        }
    }
}
复制代码


(7)进行下移操作shiftDown()

对于下移操作来说,实现思路如下:

  • 先获取左右侧节点;
  • 将左侧子节点与当前节点进行比较,如果左侧子节点比当前节点小,则进行位置交换,之后将交换完的节点继续进行比较;
  • 左侧节点比较完之后,接下来比较右侧节点;
  • 将右侧子节点与当前节点进行比较,如果右侧子节点比当前节点小,则进行位置交换,之后将交换完的节点继续进行比较;
  • 如此循环操作,直到最后一个节点为止。

下面给出具体的代码实现方法:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
    //交换节点i1和i2之间的位置
    swap(i1, i2){
        const temp = this.heap[i1];
        this.heap[i1] = this.heap[i2];
        this.heap[i2] = temp;
    }
    //获取左侧子节点,i为当前节点的索引
    getLeftIndex(i){
        return i * 2 + 1;
    }
    //获取右侧子节点,i为当前节点的索引
    getRightIndex(i){
        return i * 2 + 2;
    }
    // 进行下移操作
    shiftDown(index){
        // 获取左右侧子节点
        const leftIndex = this.getLeftIndex(index);
        const rightIndex = this.getRightIndex(index);
        //  对左侧结点进行交换
        if(this.heap[leftIndex] < this.heap[index]){
            this.swap(leftIndex, index);
            this.shiftDown(leftIndex);
        }
        //  对右侧结点进行交换
        if(this.heap[rightIndex] < this.heap[index]){
            this.swap(rightIndex, index);
            this.shiftDown(rightIndex);
        }
    }
}
复制代码


(8)插入节点的值insert()

对于插入节点操作来说,实现思路如下:

  • 将值插入堆的底部,即数组的尾部。
  • 然后上移:将这个值和它的父节点进行交换,直到父节点小于等于这个插入的值。
  • 大小为k的堆中插入元素的时间复杂度为 O(logK)

下面给出具体的代码实现方法:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
    //交换节点i1和i2之间的位置
    swap(i1, i2){
        const temp = this.heap[i1];
        this.heap[i1] = this.heap[i2];
        this.heap[i2] = temp;
    }
    //获取父节点的位置
    getParentIndex(i){
        return Math.floor((i - 1)/2);
        //也可以用以下这种右移操作的方法
        //return (i - 1) >> 1;
    }
    //shiftUp进行上移操作
    shiftUp(index){
        //如果在堆的顶点处,则不进行上移操作,直接返回结果
        if(index === 0){
            return;
        }
        //获取父节点(即获取当前节点的父节点的值,且每个节点的父节点只有一个)
        const parentIndex = this.getParentIndex(index);
        //判断如果堆的父节点如果大于子节点,则进行位置交换
        if(this.heap[parentIndex] > this.heap[index]){
            this.swap(parentIndex, index);
            //交换完成之后,继续递归进行上移操作
            this.shinftUp(parentIndex);
        }
    }
    //插入结点值的操作,value为被插入的值
    insert(value){
        //把新的值放到数组的最后一位
        this.heap.push(value);
        //将值进行上移操作
        this.shiftUp(this.heap.length - 1);
    }
}
复制代码


(9)删除堆顶操作pop()

对于删除堆顶操作来说,实现思路如下:

  • 用数组尾部元素替换堆顶(因为直接删除堆顶会破坏堆结构)。
  • 然后下移:将新堆顶和它的子节点进行交换,直到子节点大于等于这个新堆顶。
  • 大小为 k 的堆中删除堆顶的时间复杂度为 O(logK)

下面给出具体的代码实现方法:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
    //交换节点i1和i2之间的位置
    swap(i1, i2){
        const temp = this.heap[i1];
        this.heap[i1] = this.heap[i2];
        this.heap[i2] = temp;
    }
    //获取左侧子节点,i为当前节点的索引
    getLeftIndex(i){
        return i * 2 + 1;
    }
    //获取右侧子节点,i为当前节点的索引
    getRightIndex(i){
        return i * 2 + 2;
    }
    // 进行下移操作
    shiftDown(index){
        // 获取左右侧子节点
        const leftIndex = this.getLeftIndex(index);
        const rightIndex = this.getRightIndex(index);
        //  对左侧结点进行交换
        if(this.heap[leftIndex] < this.heap[index]){
            this.swap(leftIndex, index);
            this.shiftDown(leftIndex);
        }
        //  对右侧结点进行交换
        if(this.heap[rightIndex] < this.heap[index]){
            this.swap(rightIndex, index);
            this.shiftDown(rightIndex);
        }
    }
    //删除堆顶操作
    pop(){
        //将尾部的值赋值给堆顶
        this.heap[0] = this.heap.pop();
        //进行下移操作
        this.shiftDown(0);
    }
}
复制代码


(10)获取堆顶的值peek()

对于获取堆顶的值操作来说,实现思路较为简单,也就是返回数组的头部即可获取堆顶的值。具体实现代码如下:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
    //获取堆顶的值
    peek(){
        return this.heap[0];
    }
}
复制代码


(11)获取堆的大小size()

对于获取堆的大小操作来说,实现思路其实就是获取整个堆的长度,也就是返回数组的长度。具体实现代码如下:

class MinHeap{
  //创建一个构造器,存放一个堆
  constructor(){
    this.heap = [];
  }
    //获取堆的大小
    size(){
        return this.heap.length;
    }
}
复制代码


(12)结果展示

完成上面的操作以后,接下来,我们来对写一组测试用例,演示具体的结果。具体代码如下:

const h = new MinHeap();
h.insert(3);
h.insert(2);
h.insert(1);
h.pop();
console.log(h); // MinHeap { heap: [ 2, 4, 3 ] }
h.peek();
h.size();
console.log(h.peek()); // 2
console.log(h.size()); // 3


相关文章
|
20天前
|
前端开发 JavaScript 安全
前端性能调优:HTTP/2与HTTPS在Web加速中的应用
【10月更文挑战第27天】本文介绍了HTTP/2和HTTPS在前端性能调优中的应用。通过多路复用、服务器推送和头部压缩等特性,HTTP/2显著提升了Web性能。同时,HTTPS确保了数据传输的安全性。文章提供了示例代码,展示了如何使用Node.js创建一个HTTP/2服务器。
35 3
|
4天前
|
前端开发
结合具体案例分析Gitflow分支策略在大型前端项目中的应用优势
通过这个具体案例可以看出,Gitflow 分支策略在大型前端项目中能够提供有条不紊的开发环境,保障项目的稳定性和持续发展。
|
21天前
|
Rust 前端开发 JavaScript
前端性能革命:WebAssembly在高性能计算中的应用探索
【10月更文挑战第26天】随着Web应用功能的日益复杂,传统JavaScript解释执行模式逐渐成为性能瓶颈。WebAssembly(Wasm)应运而生,作为一种二进制代码格式,支持C/C++、Rust等语言编写的代码在浏览器中高效运行。Wasm不仅提升了应用的执行速度,还具备跨平台兼容性和安全性,显著改善了Web应用的响应速度和用户体验。
32 4
|
20天前
|
前端开发 数据管理 测试技术
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第27天】本文介绍了前端自动化测试中Jest和Cypress的实战应用与最佳实践。Jest适合React应用的单元测试和快照测试,Cypress则擅长端到端测试,模拟用户交互。通过结合使用这两种工具,可以有效提升代码质量和开发效率。最佳实践包括单元测试与集成测试结合、快照测试、并行执行、代码覆盖率分析、测试环境管理和测试数据管理。
37 2
|
21天前
|
前端开发 安全 应用服务中间件
前端性能调优:HTTP/2与HTTPS在Web加速中的应用
【10月更文挑战第26天】随着互联网的快速发展,前端性能调优成为开发者的重要任务。本文探讨了HTTP/2与HTTPS在前端性能优化中的应用,介绍了二进制分帧、多路复用和服务器推送等特性,并通过Nginx配置示例展示了如何启用HTTP/2和HTTPS,以提升Web应用的性能和安全性。
21 3
|
21天前
|
前端开发 JavaScript 数据可视化
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第26天】前端自动化测试在现代软件开发中至关重要,Jest和Cypress分别是单元测试和端到端测试的流行工具。本文通过解答一系列问题,介绍Jest与Cypress的实战应用与最佳实践,帮助开发者提高测试效率和代码质量。
31 2
|
21天前
|
前端开发 JavaScript API
前端框架新探索:Svelte在构建高性能Web应用中的优势
【10月更文挑战第26天】近年来,前端技术飞速发展,Svelte凭借独特的编译时优化和简洁的API设计,成为构建高性能Web应用的优选。本文介绍Svelte的特点和优势,包括编译而非虚拟DOM、组件化开发、状态管理及响应式更新机制,并通过示例代码展示其使用方法。
36 2
|
22天前
|
前端开发 JavaScript 开发者
“揭秘React Hooks的神秘面纱:如何掌握这些改变游戏规则的超能力以打造无敌前端应用”
【10月更文挑战第25天】React Hooks 自 2018 年推出以来,已成为 React 功能组件的重要组成部分。本文全面解析了 React Hooks 的核心概念,包括 `useState` 和 `useEffect` 的使用方法,并提供了最佳实践,如避免过度使用 Hooks、保持 Hooks 调用顺序一致、使用 `useReducer` 管理复杂状态逻辑、自定义 Hooks 封装复用逻辑等,帮助开发者更高效地使用 Hooks,构建健壮且易于维护的 React 应用。
29 2
|
27天前
|
JavaScript 前端开发 测试技术
前端全栈之路Deno篇(五):如何快速创建 WebSocket 服务端应用 + 客户端应用 - 可能是2025最佳的Websocket全栈实时应用框架
本文介绍了如何使用Deno 2.0快速构建WebSocket全栈应用,包括服务端和客户端的创建。通过一个简单的代码示例,展示了Deno在WebSocket实现中的便捷与强大,无需额外依赖,即可轻松搭建具备基本功能的WebSocket应用。Deno 2.0被认为是最佳的WebSocket全栈应用JS运行时,适合全栈开发者学习和使用。
|
23天前
|
前端开发 API UED
深入理解微前端架构:构建灵活、高效的前端应用
【10月更文挑战第23天】微前端架构是一种将前端应用分解为多个小型、独立、可复用的服务的方法。每个服务独立开发和部署,但共同提供一致的用户体验。本文探讨了微前端架构的核心概念、优势及实施方法,包括定义服务边界、建立通信机制、共享UI组件库和版本控制等。通过实际案例和职业心得,帮助读者更好地理解和应用微前端架构。
下一篇
无影云桌面