踩了个DNS解析的坑,但我还是没想通

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: hello大家好,我是小楼。最近踩了个DNS解析的小坑,虽然问题解决了,但排查过程比较曲折,最后还是有一点没有想通,整个过程分享给大家。

背景


最近负责的服务要置换机器。置换机器可能很多小伙伴不知道是干啥,因为大家平时接触不到,我简单解释一下什么是机器置换以及为什么需要机器置换。


机器置换通俗地讲就是更换机器,把服务从一台机器迁移到另一台上去。


为什么要机器置换呢?表面原因可能是机器硬件故障、或者机器过了保修期。


有些小伙伴可能就想问,我在公司也负责了很多服务,为啥从来没有置换过机器呢?原因可能是用了容器,没有直接部署在物理机上,置换机器的任务被转移给了云平台的运维人员;还可能是你们有专门的运维帮忙做了这件事,对开发人员来说几乎是透明的。


我负责的服务为啥要置换呢?因为机器过保了。服务为啥部署在物理机上呢?因为它是个基础服务,和一般服务不太一样,有一些限制,只能在物理机上部署。为啥没有运维人员帮忙呢?因为公司很多基础服务是自运维,开发者既做开发又是运维。


640.jpg


说完机器置换,再来聊聊这个基础服务,它是一个Go写的服务,不停地发送HTTP请求,记住这点就好,其他不重要。


这个服务在置换机器后,HTTP请求的耗时慢了不少,如下图,黄色为老机器,蓝色为新机器,指标的值就是HTTP请求的耗时(毫秒),大概1.5倍的差距。这就是今天要分享的问题,接下来说说我的排查过程。


640.png


问题排查



这种情况,先去看了机器的各项指标,如CPU、网络情况等等,看看是否有异常,确认是否被其他指标影响了。但看了一圈下来,发现新机器的各项指标甚至还优于老机器。


接着去询问了提供机器的同学,看看机器是否有异常,结果也是没有。


既然HTTP请求变慢,就想到看看是请求的哪个环节变慢了,用如下的命令来测试下,域名我用百度的域名来代替:


curl  -o /dev/null -s -w %{time_namelookup}::%{time_connect}::%{time_total}"\n" http://www.baidu.com


这里的各个参数代表含义(还有一些其他参数也可用):


  • time_total 总时间,按秒计。精确到小数点后三位。
  • time_namelookup DNS解析时间,从请求开始到DNS解析完毕所用时间。
  • time_connect 连接时间,从开始到建立TCP连接完成所用时间,包括前边DNS解析时间,如果需要单纯的得到连接时间,用这个time_connect时间减去前边time_namelookup时间。以下同理,不再赘述。
  • time_appconnect 连接建立完成时间,如SSL/SSH等建立连接或者完成三次握手时间。
  • time_pretransfer 从开始到准备传输的时间。
  • time_redirect 重定向时间,包括到最后一次传输前的几次重定向的DNS解析,连接,预传输,传输时间。
  • time_starttransfer 开始传输时间。在client发出请求之后,Web 服务器返回数据的第一个字节所用的时间


这样能看到域名解析、连接、传输各个阶段的耗时情况,新老机器对比,如果有一项特别高,那么这项肯定有问题


  • 新机器:0.001484::0.001743::0.007489
  • 老机器:0.000681::0.000912::0.002475


简单计算一下:


  • 新机器:DNS解析耗时0.001484秒,连接建立耗时0.000258秒,总耗时0.007489秒
  • 老机器:DNS解析耗时0.000681秒,连接建立耗时0.000231秒,总耗时0.002475秒


虽然从这次的测试数据来看,新机器DNS解析似乎慢了一点,但你仔细看这个数值,几乎对请求的总体耗时没啥影响,而且多测试几次,发现这两台机器的DNS解析其实差不多。


但还是不放心,验证DNS是否存在问题,再用dig命令去试一下


dig www.baidu.com


执行时,明显感觉到了卡顿,确定是DNS有问题了。


640.jpg


问题解决



一开始,我去网上搜索了一下DNS慢的相关文章,找到了一篇文章《记一次Go net库DNS问题排查》,但稍微验证了下,和我的case没啥关系,文章是好文章,所以也贴个链接,感兴趣可以读读。


《记一次Go net库DNS问题排查》https://juejin.cn/post/6948469896007122974


接着就去找了网络组的同学,网络组的同学稍微看了一眼就知道原因了,说新机器没有安装DNSmasq,这又是个啥?不要慌,先去网上查下再接话。


640.jpg


DNSmasq 提供 DNS 缓存和 DHCP 服务功能。作为域名解析服务器(DNS),DNSmasq可以通过缓存 DNS 请求来提高对访问过的网址的连接速度。作为DHCP 服务器,DNSmasq 可以用于为局域网电脑分配内网ip地址和提供路由。DNS和DHCP两个功能可以同时或分别单独实现。DNSmasq轻量且易配置,适用于个人用户或少于50台主机的网络。此外它还自带了一个 PXE 服务器。


简单来说,这里它扮演的是一个DNS缓存的角色,提高DNS的查询速度。


说到这里,插播一个小知识,我一直以为DNS会被操作系统缓存,不知道你们有没有这样的错觉,但实际上,Linux下如果没有特殊处理,每一次DNS解析都要查询DNS服务器。很好证明,可以用tcpdump抓DNS的包试试,我当时也试了下,每次都会去远程拿DNS解析结果。这个结论在《TCP/IP详解卷1》中也能找到相关的描述:


640.png


只有Windows和比较新的Linux系统可以在客户端缓存DNS,而且Linux系统是需要手动开启的,所以默认情况下都要去远程获取DNS缓存。


言归正传,网络组同学说要么装一个DNSmasq,要么改下DNS服务器的配置,也就是/etc/resolv.conf文件,由于机器上已经有服务了,所以选择了改配置这种比较安全的方式。


没改之前,/etc/resolv.conf 的第一行是127.0.0.1,也就是将本地也作为DNS服务器,但实际上本地没有开启DNS服务,网络组同学说,去掉第一行配置或者安装DNSmasq都可以。


先是去掉了127.0.0.1的配置,结果耗时不变!


640.jpg


随后加上127.0.0.1的配置,又安装了DNSmasq后,耗时就降下去了。


640.jpg

整个解决的过程,程序没有重启,唯一的变量是安装了DNSmasq,所以这一定是DNS的锅了。


问题反思



虽然问题解决了,但我还有几个疑问:


  1. 为什么配置了127.0.0.1的DNS server,但没有开启DNSmasq呢?
  2. 为什么去掉127.0.0.1配置会无效呢?


第1个问题比较好搞清楚,问了下系统部的同学,他说本来是应该开启DNSmasq的,但出了一点点小差错,结果只配置了127.0.0.1。


640.jpg


再看第2个问题,DNS本地缓存和远程查询差距这么大吗?据网络组同学说DNS server是公司内自建的,内网传输,实际并不慢,用dig也好测试,使用第2、3行的DNS server测试下,发现dig的速度都很快。


dig www.baidu.com @host


为什么有了127.0.0.1的配置就变得很慢呢?下面就从我的几个猜测入手,一个个证明,但在猜测之前,我们先了解一下Go程序解析DNS的流程


GO的DNS解析流程


Go的DNS解析分为两种:


  • cgo方式,调用c语言标准库的实现
  • 纯Go代码实现


由于要适配各个平台,所以又有了各个平台的实现。


这部分代码位于net包下,想要跟踪也很简单,写个建立连接的代码,一步步debug,找到域名解析的地方。


我直接告诉你从lookup_unix.go文件的lookupIP方法看起,当然这只是Unix系统,包括Mac和Linux,不过Mac不走纯Go的代码,它被强制走到cgo了,在Linux上没有特殊配置是走纯Go实现的DNS解析,以下代码以Linux为例:


func (r *Resolver) lookupIP(ctx context.Context, network, host string) (addrs []IPAddr, err error) {
 // ①强制走纯Go的DNS解析器
 if r.preferGo() {
  return r.goLookupIP(ctx, host)
 }
 // ②根据解析顺序解析
 order := systemConf().hostLookupOrder(r, host)
 if order == hostLookupCgo {
  if addrs, err, ok := cgoLookupIP(ctx, network, host); ok {
   return addrs, err
  }
  // cgo not available (or netgo); fall back to Go's DNS resolver
  // ③如果cgo搞不定,降级到先文件再DNS
  order = hostLookupFilesDNS
 }
 ips, _, err := r.goLookupIPCNAMEOrder(ctx, host, order)
 return ips, err
}


这里order有如下几种


hostLookupCgo      hostLookupOrder = iota // cgo
hostLookupFilesDNS                 // 文件优先
hostLookupDNSFiles                 // DNS优先
hostLookupFiles                    // 只查文件
hostLookupDNS                      // 只查DNS


这里的文件也就是/etc/hosts,goLookupIP 最终也调用了

goLookupIPCNAMEOrder,但goLookupIPCNAMEOrder这个方法的代码太长,所以我这里只讲一下大致的流程:


  1. 如果需要先查询hosts文件,则先查,查到直接返回
  2. 读取/etc/resolv.conf文件,拿出DNS server的配置,并且每5秒更新一次
  3. 构造DNS请求并向服务器发送,UDP读取的超时时间默认为5秒,可在/etc/resolv.conf文件中配置,同一个域名的不同类型(如ipv4和ipv6)的查询可配置为并行或串行
  4. 向DNS server发送请求采用的是轮询机制,如果其中一个server请求出错,则顺延至下一个,重试次数默认为2,可在/etc/resolv.conf文件中配置
  5. 最后解析查询结果并返回,如果结果为空,且配置了hosts文件兜底,则查询一次文件


好了,流程简单介绍到这里,接下来验证我的几个猜想。


猜想一:GO是否旨在程序启动时读取一次/etc/resolv.conf文件


这个猜想的依据是,如果查询DNS时拿到了127.0.0.1的DNS server,且本地未开启DNS服务时,可能会慢,且配置文件如果修改了,Go程序如果只在初始化时读一次文件,那自然改配置文件无效。


但事实并非如此,上面也说了,Go在读取DNS配置文件时是惰性地每隔5秒更新一次


func (conf *resolverConfig) tryUpdate(name string) {
 // 初始化,只做一次
  conf.initOnce.Do(conf.init)
  // ...
 now := time.Now()
 if conf.lastChecked.After(now.Add(-5 * time.Second)) {
  return
 }
 conf.lastChecked = now
  // ... 
 dnsConf := dnsReadConfig(name)
 conf.mu.Lock()
 conf.dnsConfig = dnsConf
 conf.mu.Unlock()
}


而且我做了个实验,写了个DNS解析的测试代码,放在有127.0.0.1配置但未开启DNSmasq的服务器上跑,抓127.0.0.1 53端口(DNS默认端口)的包,发现是有流量的,然后修改/etc/resolv.conf配置,去掉127.0.0.1,发现抓不到127.0.0.1 53端口的流量了,这证明和代码逻辑一致,本猜想不成立。


猜想二:DNS查询远程比本地慢很多


这个很好证明,还是用上面的程序


  1. 放在无127.0.0.1配置的服务器上跑
  2. 放在有127.0.0.1配置且开启DNSmasq的服务器上跑


结果两者耗时差不多,甚至他们和在有127.0.0.1配置但未开启DNSmasq的服务器上的耗时也基本一致。


这说明无论怎样查询DNS都不慢。


猜想三:是否是并发太高导致



为什么我会有这个猜想呢,一是线上的QPS大概是50左右,和上面测试的场景不太一样,二是我在上面的代码中看到了锁,是不是并发高了之后,锁带来的开销变大导致?


我写了个100并发的代码,去查询DNS,结果发现这段代码在如下三种场景,耗时都差不多


  1. 无127.0.0.1配置的服务器
  2. 有127.0.0.1配置且开启DNSmasq的服务器
  3. 有127.0.0.1配置且未开启DNSmasq的服务器


同时我也去问了网络组的同学,他说DNS server能抗住百万QPS,服务端没有压力。


640.jpg



最后



写到最后,我emo了~虽然问题解决了,但为什么当时DNS查询慢还是不知道,如果你看了文章知道其中哪里有问题,或者有什么比较好的排查方法,欢迎来探讨,反正我是查不下去了。



相关文章
|
2月前
|
域名解析 存储 网络协议
深入解析网络通信关键要素:IP 协议、DNS 及相关技术
本文详细介绍了IP协议报头结构及其各字段的功能,包括版本、首部长度、服务类型、总长度、标识、片偏移、标志、生存时间(TTL)、协议、首部检验和等内容。此外,还探讨了IP地址的网段划分、特殊IP地址的应用场景,以及路由选择的大致流程。最后,文章简要介绍了DNS协议的作用及其发展历史,解释了域名解析系统的工作原理。
128 5
深入解析网络通信关键要素:IP 协议、DNS 及相关技术
|
23天前
|
域名解析 缓存 网络协议
浏览器中输入URL返回页面过程(超级详细)、DNS域名解析服务,TCP三次握手、四次挥手
浏览器中输入URL返回页面过程(超级详细)、DNS域名解析服务,TCP三次握手、四次挥手
|
30天前
|
监控 网络协议 安全
DNS服务器故障不容小觑,从应急视角谈DNS架构
DNS服务器故障不容小觑,从应急视角谈DNS架构
52 4
|
1月前
|
域名解析 网络协议
非阿里云注册域名如何在云解析DNS设置解析?
非阿里云注册域名如何在云解析DNS设置解析?
|
1月前
|
域名解析 存储 缓存
域名解析 DNS:连接数字世界的关键枢纽
在数字世界中,DNS(域名解析系统)如同一位至关重要的引路人,将我们输入的域名与对应的IP地址相连,使我们可以轻松访问各种网站和服务。它通过多级服务器查询,将易于记忆的域名转换为复杂的IP地址,极大提升了互联网的易用性和普及度。尽管面临网络延迟和域名数量激增等挑战,通过分布式系统和缓存技术等创新方案,DNS 系统将持续发展,为用户提供更安全、高效的网络体验。
52 2
|
1月前
|
弹性计算 负载均衡 网络协议
内部名称解析设置阿里云私有 DNS 区域,针对于阿里云国际版经验教程
内部名称解析设置阿里云私有 DNS 区域,针对于阿里云国际版经验教程
|
1月前
|
域名解析 缓存 网络协议
【网络】DNS,域名解析系统
【网络】DNS,域名解析系统
98 1
|
1月前
|
域名解析 弹性计算
内网域?名解析记录是否会覆盖公网域名解析记录?
内网域?名解析记录是否会覆盖公网域名解析记录?
|
2月前
|
网络协议
DNS正向解析实现
文章介绍了DNS正向解析的实现,包括资源记录的定义、配置区域解析记录的步骤,并通过实际操作展示了如何为"yinzhengjie.com"域名配置DNS解析记录。
53 2
DNS正向解析实现

相关产品

  • 云解析DNS
  • 下一篇
    无影云桌面