Java设计模式之单例模式

简介: Java设计模式之单例模式

单例模式


  主要作用:为系统生成唯一的一个实例(对象),永久驻留在内存中,减少了系统的资源开销。


常用的实现方式:


1、饿汉式


优点:线程安全、调用效率高

缺点:不能延时加载


代码:

public class SingletonDemo01 {
    //类初始化时,立即加载这个对象(无延时加载优势),加载类时是天然线程安全的
    private static SingletonDemo01 instance = new SingletonDemo01();
    //私有构造方法
    private SingletonDemo01() {}
    //加载类时是天然线程安全的,不需要同步,调用效率高
    public static SingletonDemo01 getInstance() {
        return instance;
    }
}


2、懒汉式


优点:线程安全、可延时加载

缺点:调用效率不高(每次调用都得同步,并发效率低)


代码:

public class SingletonDemo02 {
    //类初始化时,不初始化这个对象(延时加载,真正用的时候再创建)
    private static SingletonDemo02 instance;
    //私有化构造器
    private SingletonDemo02(){
    }
    //获取实例方法,synchronized进行同步,调用效率低
    public static synchronized SingletonDemo02 getInstance() {
        if (instance == null) {
            instance = new SingletonDemo02();
        }
        return instance;
    }
}


3、静态内部类式


优点:线程安全、调用效率高、可延时加载,兼具了饿汉式和懒汉式的优点。

缺点:


代码:

public class SingletonDemo03 {
    //静态内部类,,只有调用getInstance方法时才会进行加载(延时加载)
    private static class InnerClass {
        //static final修饰instance,保证实例在内存中唯一(线程安全)
        private static final SingletonDemo03 instance = new SingletonDemo03();
    }
    //私有构造器
    private SingletonDemo03() {
    }
    //获取实例方法
    public static SingletonDemo03 getInstance() {
        return InnerClass.instance;
    }
}


4、枚举式


优点:基于JVM底层实现,天然单例,线程安全、调用效率高

缺点:不能延时加载


代码:

public enum  SingletonDemo04 {
    //该枚举元素本身就是单例的
    INSTANCE;
}



代码测试


public class Main {
    public static void main(String[] args) {
        //饿汉式创建的对象都是同一个对象
        SingletonDemo01 instance1 = SingletonDemo01.getInstance();
        SingletonDemo01 instance2 = SingletonDemo01.getInstance();
        System.out.println("饿汉式创建的2个实例是同一个对象?" + (instance1 == instance2));
        //懒汉式创建的对象都是同一个对象
        SingletonDemo02 instance3 = SingletonDemo02.getInstance();
        SingletonDemo02 instance4 = SingletonDemo02.getInstance();
        System.out.println("懒汉式创建的2个实例是同一个对象?" + (instance3 == instance4));
        //静态内部类创建的对象都是同一个对象
        SingletonDemo03 instance5 = SingletonDemo03.getInstance();
        SingletonDemo03 instance6 = SingletonDemo03.getInstance();
        System.out.println("静态内部类方式创建的2个实例是同一个对象?"+ (instance5 == instance6));
        //枚举式创建的对象都是同一个对象
        SingletonDemo04 instance7 = SingletonDemo04.INSTANCE;
        SingletonDemo04 instance8 = SingletonDemo04.INSTANCE;
        System.out.println("枚举式创建的2个实例是同一个对象?"+ (instance7 == instance8));
    }
}


输出结果:


饿汉式创建的2个实例是同一个对象?true
懒汉式创建的2个实例是同一个对象?true
静态内部类方式创建的2个实例是同一个对象?true
枚举式创建的2个实例是同一个对象?true


总结


当实例化对象非常占用系统资源且需要延时加载时,推荐使用懒汉式、静态内部类式(优于懒汉式);

当实例化对象占用系统资源小时且要立即加载时,推荐使用饿汉式、枚举式(优于饿汉式)。


扩展


单例模式中的枚举式基于JVM底层实现,是天然线程安全的,但是其他创建单例的方法用反射和反序列化的手段是可以破解的(可以创建多个不同的对象)。

这里以饿汉式为例:


未特殊处理的饿汉式代码:

public class SingletonDemo05 implements Serializable{
    //类初始化时,立即加载这个对象(无延时加载优势),加载类时是天然线程安全的
    private static SingletonDemo05 instance = new SingletonDemo05();
    //私有构造方法
    private SingletonDemo05() {}
    //加载类时是天然线程安全的,不需要同步,调用效率高
    public static SingletonDemo05 getInstance() {
        return instance;
    }
}


反射、反序列破解代码:

public class Main2 {
    public static void main(String[] args) throws Exception{
        SingletonDemo05 s1 = SingletonDemo05.getInstance();
        SingletonDemo05 s2 = SingletonDemo05.getInstance();
        System.out.println("饿汉式创建的2个实例是同一个对象?" + (s1 == s2));
        //反射方式破解单例
        Class<SingletonDemo05> clazz = (Class<SingletonDemo05>) Class.forName("com.led.singleton.SingletonDemo05");
        Constructor<SingletonDemo05> constructor = clazz.getDeclaredConstructor(null);
        //使用下面的方法才能访问私有方法
        constructor.setAccessible(true);
        SingletonDemo05 s3 = constructor.newInstance();
        System.out.println("反射生成的对象和正常生成的是同一个对象吗?" + (s1 == s3));//false
        //反序列化方式破解单例
        //1、先序列化到本地磁盘(SingletonDemo05需要实现Serializable接口)
        FileOutputStream fos = new FileOutputStream("D:/a.txt");
        ObjectOutputStream oos = new ObjectOutputStream(fos);
        //Write the specified object to the ObjectOutputStream
        oos.writeObject(s1);
        if (oos != null) {
            oos.close();
        }
        if (fos != null) {
            fos.close();
        }
        //2、从磁盘反序列化到内存
        FileInputStream fis = new FileInputStream("D:/a.txt");
        ObjectInputStream ois = new ObjectInputStream(fis);
        SingletonDemo05 s4 = (SingletonDemo05) ois.readObject();
        if (ois != null) {
            ois.close();
        }
        if (fis != null) {
            fis.close();
        }
        System.out.println("正常创建的和反序列化生成的是同一个对象?" + (s1 == s4));//false
    }
}



控制台输出:

饿汉式创建的2个实例是同一个对象?true
反射生成的对象和非反射生成的是同一个对象吗?false
正常创建的和反序列化生成的是同一个对象?false


由此可见,不对饿汉式代码进行特殊处理,使用反射和反序列方法会破坏单例性。


对反射的特殊处理:


对饿汉式类中的构造方法进行修改,当已经有实例时,抛出异常,防止创建多个不同实例


//私有构造方法
    private SingletonDemo05() {
        if (instance != null) {
            throw new RuntimeException("实例已存在");
        }
    }


控制台输出:


饿汉式创建的2个实例是同一个对象?true
Exception in thread "main" java.lang.reflect.InvocationTargetException
    at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
    at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
    at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
    at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
    at com.led.singleton.Main2.main(Main2.java:25)
Caused by: java.lang.RuntimeException: 实例已存在
    at com.led.singleton.SingletonDemo05.<init>(SingletonDemo05.java:18)
    ... 5 more


对反序列化的特殊处理:


在饿汉式类中通过定义readResolve()防止获得不同对象


//通过定义readResolve()防止获得不同对象
    private Object readResolve() throws ObjectStreamException {
        return instance;
    }


控制台输出:

正常创建的和反序列化生成的是同一个对象?true


特殊处理的饿汉式代码:

public class SingletonDemo05 implements Serializable{
    //类初始化时,立即加载这个对象(无延时加载优势),加载类时是天然线程安全的
    private static SingletonDemo05 instance = new SingletonDemo05();
    //私有构造方法
    private SingletonDemo05() {     //通过抛出异常,防止反射通过构造器创建多个实例
        if (instance != null) {
            throw new RuntimeException("实例已存在");
        }
    }
    //加载类时是天然线程安全的,不需要同步,调用效率高
    public static SingletonDemo05 getInstance() {
        return instance;
    }
    //通过定义readResolve()方法,防止通过反序列化方式创建多个实例
    private Object readResolve() throws ObjectStreamException {
        return instance;
    }
}
相关文章
|
28天前
|
设计模式 算法 Java
Java中的设计模式:提升代码质量的秘诀
【8月更文挑战第23天】在Java开发中,设计模式是提高代码可读性、可维护性和扩展性的强有力工具。本文通过浅显易懂的语言和实际案例,探讨几种常见的设计模式及其在Java中的应用,旨在帮助开发者更好地理解并运用这些模式来优化自己的代码结构。
39 2
|
6天前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑汇总】Java基础+JavaWeb+SSM+SpringBoot+SpringCloud+瑞吉外卖/谷粒商城/学成在线+设计模式+面试题汇总+性能调优/架构设计+源码解析
本文是“Java学习路线”专栏的导航文章,目标是为Java初学者和初中高级工程师提供一套完整的Java学习路线。
|
2天前
|
设计模式 Java
Java设计模式:组合模式的介绍及代码演示
组合模式是一种结构型设计模式,用于将多个对象组织成树形结构,并统一处理所有对象。例如,统计公司总人数时,可先统计各部门人数再求和。该模式包括一个通用接口、表示节点的类及其实现类。通过树形结构和节点的通用方法,组合模式使程序更易扩展和维护。
Java设计模式:组合模式的介绍及代码演示
|
6天前
|
设计模式 安全 算法
【Java面试题汇总】设计模式篇(2023版)
谈谈你对设计模式的理解、七大原则、单例模式、工厂模式、代理模式、模板模式、观察者模式、JDK中用到的设计模式、Spring中用到的设计模式
【Java面试题汇总】设计模式篇(2023版)
|
6天前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑】设计模式——原型模式
对比原型模式和传统方式的实现思路、代码方案、优缺点,阐述原型模式的使用场景,以及深拷贝、浅拷贝等相关概念,并扩展原型模式在Spring源码中的应用。
【Java笔记+踩坑】设计模式——原型模式
|
21天前
|
设计模式 缓存 算法
揭秘策略模式:如何用Java设计模式轻松切换算法?
【8月更文挑战第30天】设计模式是解决软件开发中特定问题的可重用方案。其中,策略模式是一种常用的行为型模式,允许在运行时选择算法行为。它通过定义一系列可互换的算法来封装具体的实现,使算法的变化与客户端分离。例如,在电商系统中,可以通过定义 `DiscountStrategy` 接口和多种折扣策略类(如 `FidelityDiscount`、`BulkDiscount` 和 `NoDiscount`),在运行时动态切换不同的折扣逻辑。这样,`ShoppingCart` 类无需关心具体折扣计算细节,只需设置不同的策略即可实现灵活的价格计算,符合开闭原则并提高代码的可维护性和扩展性。
37 2
|
21天前
|
设计模式 安全 Java
Java 单例模式,背后有着何种不为人知的秘密?开启探索之旅,寻找答案!
【8月更文挑战第30天】单例模式确保一个类只有一个实例并提供全局访问点,适用于需全局共享的宝贵资源如数据库连接池、日志记录器等。Java中有多种单例模式实现,包括饿汉式、懒汉式、同步方法和双重检查锁定。饿汉式在类加载时创建实例,懒汉式则在首次调用时创建,后者在多线程环境下需使用同步机制保证线程安全。单例模式有助于提高代码的可维护性和扩展性,应根据需求选择合适实现方式。
29 1
|
21天前
|
设计模式 Java
Java 设计模式之谜:工厂模式与抽象工厂模式究竟隐藏着怎样的神奇力量?
【8月更文挑战第30天】在Java编程中,设计模式为常见问题提供了高效解决方案。工厂模式与抽象工厂模式是常用的对象创建型设计模式,能显著提升代码的灵活性、可维护性和可扩展性。工厂模式通过定义创建对象的接口让子类决定实例化哪个类;而抽象工厂模式则进一步提供了一个创建一系列相关或相互依赖对象的接口,无需指定具体类。这种方式使得系统更易于扩展和维护。
30 1
|
21天前
|
设计模式 Java
重构你的代码:探索Java中的混合、装饰器与组合设计模式
【8月更文挑战第30天】在软件开发中,设计模式为特定问题提供了结构化的解决方案,使代码更易理解、维护及扩展。本文将介绍三种常用的 Java 设计模式:混合模式、装饰器模式与组合模式,并附有示例代码展示实际应用。混合模式允许通过继承多个接口或抽象类实现多重继承;装饰器模式可在不改变对象结构的情况下动态添加新功能;组合模式则通过树形结构表示部分-整体层次,确保客户端处理单个对象与组合对象时具有一致性。
15 1
|
24天前
|
SQL 设计模式 安全
Java编程中的单例模式深入解析
【8月更文挑战第27天】本文旨在探索Java中实现单例模式的多种方式,并分析其优缺点。我们将通过代码示例,展示如何在不同的场景下选择最合适的单例模式实现方法,以及如何避免常见的陷阱。