一份可视化特征图的代码

简介: 本文给大家分享一份我用的特征图可视化代码。欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、最新论文解读、各种技术教程、CV招聘信息发布等。关注公众号可邀请加入免费版的知识星球和技术交流群。

写在前面的话


特征图可视化是很多论文所需要做的一份工作,其作用可以是用于证明方法的有效性,也可以是用来增加工作量,给论文凑字数


具体来说就是可视化两个图,使用了新方法的和使用之前的,对比有什么区别,然后看图写论文说明新方法体现的作用。


吐槽一句,有时候这个图 论文作者自己都不一定能看不懂,虽然确实可视化的图有些改变,但并不懂这个改变说明了什么,反正就吹牛,强行往自己新方法编的故事上扯,就像小学一年级的作文题--看图写作文。


之前知乎上有一个很热门的话题,如果我在baseline上做了一点小小的改进,却有很大的效果,这能写论文吗?


这种情况最大的问题就在于要如何写七页以上,那一点点的改进可能写完思路,公式推理,画图等内容才花了不到一页,剩下的内容如何搞?可视化特征图!!!


这一点可以在我看过的甚多论文上有所体现,反正我是没看明白论文给的可视化图,作者却能扯那么多道道。这应该就是用来增加论文字数和增加工作量的。


总之一句话,可视化特征图是很重要的工作,最好要会


 

初始化配置


这部分先完成加载数据,修改网络,定义网络,加载预训练模型。


加载数据并预处理


这里只加载一张图片,就不用通过classdataset了,因为classdataset是针对大量数据的,生成一个迭代器一批一批地将图片送给网络。但我们仍然要完成classdataset中数据预处理的部分。

数据预处理所必须要有的操作是调整大小,转化为Tensor格式,归一化。至于其它数据增强或预处理的操作,自己按需添加。


def image_proprecess(img_path):
    img = Image.open(img_path)
    data_transforms = transforms.Compose([
        transforms.Resize((384, 384), interpolation=3),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
    data = data_transforms(img)
    data = torch.unsqueeze(data,0)
    return data


这里由于只加载一张图片,因此后面要使用torch.unsqueeze将三维张量变成四维。

 

修改网络


假如你要可视化某一层的特征图,则需要将该层的特征图返回出来,因此需要先修改网络中的forward函数。具体修改方式如下所示。

def forward(self, x):
    x = self.model.conv1(x)
    x = self.model.bn1(x)
    x = self.model.relu(x)
    x = self.model.maxpool(x)
    feature = self.model.layer1(x)
    x = self.model.layer2(feature)
    x = self.model.layer3(x)
    x = self.model.layer4(x)
    return feature,x

定义网络并加载预训练模型

def Init_Setting(epoch):
    dirname = '/mnt/share/VideoReID/share/models/Methods5_trial1'
    model = siamese_resnet50(701, stride=1, pool='avg')
    trained_path = os.path.join(dirname, 'net_%03d.pth' % epoch)
    print("load %03d.pth" % epoch)
    model.load_state_dict(torch.load(trained_path))
    model = model.cuda().eval()
    return model

这部分需要说明的是最后一行,要将网络设置为推理模式。

 

可视化特征图


这部分主要是将特征图的某一通道转化为一张图来可视化


def visualize_feature_map(img_batch,out_path,type,BI):
    feature_map = torch.squeeze(img_batch)
    feature_map = feature_map.detach().cpu().numpy()
    feature_map_sum = feature_map[0, :, :]
    feature_map_sum = np.expand_dims(feature_map_sum, axis=2)
    for i in range(0, 2048):
        feature_map_split = feature_map[i,:, :]
        feature_map_split = np.expand_dims(feature_map_split,axis=2)
        if i > 0:
            feature_map_sum +=feature_map_split
        feature_map_split = BI.transform(feature_map_split)
        plt.imshow(feature_map_split)
        plt.savefig(out_path + str(i) + "_{}.jpg".format(type) )
        plt.xticks()
        plt.yticks()
        plt.axis('off')
    feature_map_sum = BI.transform(feature_map_sum)
    plt.imshow(feature_map_sum)
    plt.savefig(out_path + "sum_{}.jpg".format(type))
    print("save sum_{}.jpg".format(type))

这里一行一行来解释。


1. 参数img_batch是从网络中的某一层传回来的特征图,BI是双线性插值的函数,自定义的,下面会讲。


2. 由于只可视化了一张图片,因此img_batch是四维的,且batchsize维为1。第三行将它从GPU上弄到CPU上,并变成numpy格式。


3. 剩下部分主要完成将每个通道变成一张图,以及将所有通道每个元素对应位置相加,并保存。

 

双线性插值


由于经过多次网络降采样,后面层的特征图往往变得只有7x7,16x16大小。可视化后特别小,因此需要将它上采样,这里采样的方式是双线性插值。因此,这里给一份双线性插值的代码。


class BilinearInterpolation(object):
    def __init__(self, w_rate: float, h_rate: float, *, align='center'):
        if align not in ['center', 'left']:
            logging.exception(f'{align} is not a valid align parameter')
            align = 'center'
        self.align = align
        self.w_rate = w_rate
        self.h_rate = h_rate
    def set_rate(self,w_rate: float, h_rate: float):
        self.w_rate = w_rate    # w 的缩放率
        self.h_rate = h_rate    # h 的缩放率
    # 由变换后的像素坐标得到原图像的坐标    针对高
    def get_src_h(self, dst_i,source_h,goal_h) -> float:
        if self.align == 'left':
            # 左上角对齐
            src_i = float(dst_i * (source_h/goal_h))
        elif self.align == 'center':
            # 将两个图像的几何中心重合。
            src_i = float((dst_i + 0.5) * (source_h/goal_h) - 0.5)
        src_i += 0.001
        src_i = max(0.0, src_i)
        src_i = min(float(source_h - 1), src_i)
        return src_i
    # 由变换后的像素坐标得到原图像的坐标    针对宽
    def get_src_w(self, dst_j,source_w,goal_w) -> float:
        if self.align == 'left':
            # 左上角对齐
            src_j = float(dst_j * (source_w/goal_w))
        elif self.align == 'center':
            # 将两个图像的几何中心重合。
            src_j = float((dst_j + 0.5) * (source_w/goal_w) - 0.5)
        src_j += 0.001
        src_j = max(0.0, src_j)
        src_j = min((source_w - 1), src_j)
        return src_j
    def transform(self, img):
        source_h, source_w, source_c = img.shape  # (235, 234, 3)
        goal_h, goal_w = round(
            source_h * self.h_rate), round(source_w * self.w_rate)
        new_img = np.zeros((goal_h, goal_w, source_c), dtype=np.uint8)
        for i in range(new_img.shape[0]):       # h
            src_i = self.get_src_h(i,source_h,goal_h)
            for j in range(new_img.shape[1]):
                src_j = self.get_src_w(j,source_w,goal_w)
                i2 = ceil(src_i)
                i1 = int(src_i)
                j2 = ceil(src_j)
                j1 = int(src_j)
                x2_x = j2 - src_j
                x_x1 = src_j - j1
                y2_y = i2 - src_i
                y_y1 = src_i - i1
                new_img[i, j] = img[i1, j1]*x2_x*y2_y + img[i1, j2] * \
                    x_x1*y2_y + img[i2, j1]*x2_x*y_y1 + img[i2, j2]*x_x1*y_y1
        return new_img
#使用方法
BI = BilinearInterpolation(8, 8)
feature_map = BI.transform(feature_map)

main函数流程


上面介绍了各个部分的代码,下面就是整体流程。比较简单


imgs_path = "/path/to/imgs/"
save_path = "/save/path/to/output/"
model = Init_Setting(120)
BI = BilinearInterpolation(8, 8)
data = image_proprecess(out_path + "0836.jpg")
data = data.cuda()
output, _ = model(data)
visualize_feature_map(output, save_path, "drone", BI)

可视化效果图

ec843bf6f7591fbe730d74dea5dc3ef3.png

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、最新论文解读、各种技术教程、CV招聘信息发布等。关注公众号可邀请加入免费版的知识星球和技术交流群。

相关文章
|
机器学习/深度学习 图计算 图形学
同构图、异构图、属性图、非显式图
同构图(Homogeneous Graph)、异构图(Heterogeneous Graph)、属性图(Property Graph)和非显式图(Graph Constructed from Non-relational Data)。 (1)同构图:
1841 0
同构图、异构图、属性图、非显式图
|
3月前
|
自然语言处理 数据可视化
【词云图绘制实战】——数据准备、清洗、多形式展示
【词云图绘制实战】——数据准备、清洗、多形式展示
|
3月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
3月前
|
并行计算 前端开发 数据可视化
R语言面板平滑转换回归(PSTR)分析案例实现
R语言面板平滑转换回归(PSTR)分析案例实现
|
3月前
|
数据可视化 数据挖掘
Seaborn中的分类图:直观展示分类数据的差异
【4月更文挑战第17天】Seaborn是数据分析中的利器,尤其在展示分类数据差异方面。本文介绍了5种主要图表类型:1) 使用`barplot`创建条形图,便于比较不同分类的数值差异;2) `boxplot`生成箱线图,展示数据分布和离散程度;3) `stripplot`和`swarmplot`显示单个观测值分布,理解分类内变异性和差异;4) `scatterplot`结合`hue`参数,呈现分类在连续变量关系中的差异;5) 自定义分类图,调整样式以满足特定需求。通过这些图表,可以更深入地分析和传达分类数据的特性。
|
3月前
|
机器学习/深度学习 数据可视化 PyTorch
基于TorchViz详解计算图(附代码)
基于TorchViz详解计算图(附代码)
183 0
|
3月前
|
C++
【SPSS】两独立样本T检验分析详细操作教程(附案例实战)
【SPSS】两独立样本T检验分析详细操作教程(附案例实战)
795 0
|
3月前
|
机器学习/深度学习 数据可视化 算法
神经网络模型结构框架可视化的在线与软件绘图方法
神经网络模型结构框架可视化的在线与软件绘图方法
188 1
|
12月前
|
数据可视化 数据挖掘 Linux
转录组下游分析丨利用limma包进行差异表达分析,结果可视化绘制火山图和热图
转录组下游分析丨利用limma包进行差异表达分析,结果可视化绘制火山图和热图
|
数据建模 TensorFlow API
《30天吃掉那只 TensorFlow2.0》 1-2 图片数据建模流程范例 (cifar2图片分类问题)
《30天吃掉那只 TensorFlow2.0》 1-2 图片数据建模流程范例 (cifar2图片分类问题)
《30天吃掉那只 TensorFlow2.0》 1-2 图片数据建模流程范例 (cifar2图片分类问题)