ICCV2021 | MicroNet:以极低的 FLOPs 改进图像识别

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 这篇论文旨在以极低的计算成本解决性能大幅下降的问题。提出了微分解卷积,将卷积矩阵分解为低秩矩阵,将稀疏连接整合到卷积中。提出了一个新的动态激活函数-- Dynamic Shift Max,通过最大化输入特征图与其循环通道移位之间的多个动态融合来改善非线性。

这篇论文旨在以极低的计算成本解决性能大幅下降的问题。提出了微分解卷积,将卷积矩阵分解为低秩矩阵,将稀疏连接整合到卷积中。提出了一个新的动态激活函数-- Dynamic Shift Max,通过最大化输入特征图与其循环通道移位之间的多个动态融合来改善非线性。


在这两个新操作的基础上,得到了一个名为 MicroNet 的网络系列,它在低 FLOP 机制中实现了比现有技术显着的性能提升。在 12M FLOPs 的约束下,MicroNet 在 ImageNet 分类上达到了 59.4% 的 top-1 准确率,比 MobileNetV3 高 9.6%。


论文出发点


高效 CNN 架构的最新进展成功地将 ImageNet 分类的计算成本从 3.8G FLOPs (ResNet-50) 降低了两个数量级到大约 40M FLOPs(例如 MobileNet、ShuffleNet),性能下降合理。


然而,当进一步降低计算成本时,它们会遭受显着的性能下降。例如,当计算成本分别从 44M 下降到 21M 和 12M MAdds 时,MobileNetV3 的 top-1 准确率从 65.4% 大幅下降到 58.0% 和 49.8%。


这篇论文的目标是将极低 FLOP 机制下的精度从 21M 降到 4M MAdds,这标志着计算成本降低到另一个数量级。


处理极低计算成本(4M-21M FLOPs)的问题非常具有挑战性,考虑到输入数据大小为 224×224x3,在第一层 3 × 3 卷积、输出通道8的操作上就消耗了 2.7M MAdds。 剩余的资源太有限,无法设计有效分类所需的卷积层和 1,000 类分类器。

5bd40c8812c54c84306ec88d03a34d3a.png

如上图所示,减少现有高效 CNN(例如 MobileNet 和 ShuffleNet)的宽度或深度的常见策略会导致严重的性能下降。


这篇论文专注于新的算子设计,同时将输入分辨率固定为 224×224,预算成本为 4M FLOPs。

 

创新思路


这篇论文从两个角度处理极低的 FLOPs:节点连接性(node connectivity)和非线性(non-linearity),这与网络宽度和深度有关。


首先,降低节点连接以扩大网络宽度为给定的计算预算提供了一个很好的权衡。其次,依靠改进的层非线性来补偿减少的网络深度,这决定了网络的非线性。这两个因素促使设计更有效的卷积和激活函数。

 

Methods


Micro-Factorized Convolution

分为两部分:Micro-Factorized Pointwise Convolution和 Micro-Factorized Depthwise Convolution,两者再以不同方式组合。

 

Micro-Factorized Pointwise Convolution


论文提出了微分解卷积 (MF-Conv) 将逐点卷积分解为两个组卷积层,其中组数 G 适应通道数 C 为:G = sqrt(C/R)


其中 R 是两者之间的通道缩减比。


对于给定的计算成本,该等式在通道数量和节点连接之间实现了良好的折衷。


10ddc2a0780851bba857d2900fad33aa.png

如上图所示,输入通道数C分为G组,G组再通过中间一个 (C/R × C/R )的置换矩阵Φ 降低通道数,这个置换矩阵类似于shufflenet中的打乱通道顺序的操作。

 

Micro-Factorized Depthwise Convolution


1111fc1f6d9f203ead98705ce50ff24d.png

这个部分是引用Inception_v2中的分解卷积,在使用Depthwise的基础上,将KxK卷积核分为Kx1和1xK两部分。

 

Micro-Factorized pointwise 和 depthwise 卷积可以以两种不同的方式组合:(a) 常规组合,和 (b) lite 组合。


1d41a73c18168affd4bbe684d8dc3ea9.png

前者只是将两个卷积连接起来。 上图所示的 lite 组合使用微分解深度卷积来扩展通道数量,通过为每个通道应用多个空间滤波器。 然后应用一组自适应卷积来融合和压缩通道数。 与其常规组合方式相比,它通过节省通道融合(pointwise)计算在学习空间过滤器(depthwise)上花费更多资源,经验证明这对于实现较低的网络层更有效。


Dynamic Shift-Max


考虑到Micro-Factorized pointwise 卷积更注重组内的连接,因此提出Dynamic Shift-Max,这是一种新的动态非线性,用于加强由Micro-Factorized创建的组之间的联系。

Dynamic Shift-Max 输出 K 个融合的最大值,每个融合组合多个 (J) 组位移为

fe11fe0f022b3223a40b6444b7dcb526.png

其中J表示组数,i表示通道数,K表示融合后的输出数量。当J=K=2时,可以在准确率和复杂度之间取得较好的折衷。


这个公式用一句话来解释就是,每J个组,对每组的x进行加权求和,共K个融合,然后取K个中的最大值作为第i个通道上的激活函数值。


这样,DY-Shift-Max 实现了两种形式的非线性: (a) 输出 J 组的 K 个融合的最大值,以及 (b) 通过动态参数。


第一个非线性是对 Micro-Factorized pointwise 卷积的补充,它侧重于每个组内的连接,加强组之间的连接。第二个使网络能够根据输入 x 调整这种强化。这两个操作增加了网络的表示能力,补偿了减少层数所带来的损失。

 

MicroNet


de76b6a7a03ae8485e4d8e7ef717aca1.png

d1db37508954fa9f6e0b7c8a57d1ba8c.png


Conclusion


c3ed06e2784fd39449054a6ca23ebd25.png

在 12M FLOPs 的约束下,MicroNet 在 ImageNet 分类上达到了 59.4% 的 top-1 准确率,比 MobileNetV3 高 9.6%。

031fb99459154522bc2649e856771f7b.png

对 ImageNet 分类的评估。左:top-1 准确率与 FLOPs。右图:top-1 准确率与延迟。注意添加了 Mo bileNetV3 ×0.75 以方便比较。MicroNet 优于 MobileNetV3,尤其是在计算成本极低的情况下(当 FLOPs 小于 15M 或延迟小于 9ms 时,top-1 精度提高 5% 以上)。


f5cef8e3e17455233a99428fc267b18c.png

动态 Shift-Max 与 ImageNet 上的其他激活函数的比较.

相关文章
|
编解码 计算机视觉
超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(二)
超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(二)
297 0
|
机器学习/深度学习 编解码 算法
超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(一)
超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(一)
226 0
|
8天前
|
机器学习/深度学习 算法 数据可视化
深度学习在图像识别中的应用与挑战
【7月更文挑战第43天】 随着人工智能技术的迅猛发展,深度学习已成为推动计算机视觉领域进步的核心动力。本文旨在探讨深度学习技术在图像识别任务中的实际应用情况,分析其面临的主要挑战,并提出可能的解决方案。通过回顾当前最前沿的研究成果和案例分析,文章揭示了深度学习算法在处理复杂图像数据时的强大能力以及存在的局限性。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】探讨最新的深度学习算法、模型创新以及在图像识别、自然语言处理等领域的应用进展
深度学习作为人工智能领域的重要分支,近年来在算法、模型以及应用领域都取得了显著的进展。以下将探讨最新的深度学习算法与模型创新,以及它们在图像识别、自然语言处理(NLP)等领域的应用进展。
16 6
|
2天前
|
机器学习/深度学习 监控 量子技术
深度学习在图像识别中的应用与挑战
【8月更文挑战第18天】 本文将探讨深度学习技术如何革新了图像识别领域,并讨论在这一过程中遇到的挑战。我们将从基础概念出发,逐步深入到高级应用,最后分析当前技术的局限性和未来的发展方向。通过这篇文章,读者将获得对深度学习在图像识别中作用的全面理解,以及它如何影响我们的日常生活和未来技术的趋势。
11 4
|
3天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
【8月更文挑战第17天】随着人工智能领域的飞速发展,深度学习已成为推动技术革新的重要力量。特别是在图像识别领域,深度学习模型凭借其强大的特征提取和分类能力,已经实现了超越人类水平的识别精度。然而,这一过程并非没有挑战。本文将深入探讨深度学习在图像识别方面的应用,同时分析当前面临的主要挑战,并展望未来的发展方向。
|
4天前
|
机器学习/深度学习 人工智能
深度学习在图像识别中的应用与挑战
本文以通俗易懂的语言,深入浅出地介绍了深度学习在图像识别领域的应用及其面临的挑战。通过生动的比喻和实例,使读者能够轻松理解这一复杂技术,并引发对人工智能未来发展的思考。
12 1
|
5天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
本文旨在探讨深度学习技术在图像识别领域内的实际应用和面临的主要挑战。通过分析深度学习模型的基本构成及其在图像处理方面的优势,我们揭示了这项技术如何推动视觉识别任务的边界。同时,讨论了数据偏差、模型泛化能力和计算资源限制等问题,为读者提供了对深度学习在图像识别上应用的全面理解。
|
6天前
|
机器学习/深度学习 传感器 人工智能
深度学习在图像识别中的应用与挑战
随着人工智能的迅速发展,深度学习技术已成为图像识别领域的核心技术。本文通过简明的语言和生动的比喻,深入浅出地介绍了深度学习如何改变图像识别的游戏规则,同时指出了当前面临的主要挑战和未来的发展方向。
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习在图像识别中的应用与挑战
【8月更文挑战第13天】随着人工智能领域的迅速发展,深度学习技术在图像识别中扮演了至关重要的角色。本文将深入探讨深度学习如何革新图像识别领域,包括其工作原理、实际应用案例及面临的主要挑战。我们将通过分析深度学习模型如卷积神经网络在处理图像数据时的强大能力,以及这些技术如何推动自动驾驶汽车和医疗诊断等领域的进步,来揭示深度学习的潜力。此外,本文还将讨论数据隐私、算法偏见等伦理问题,以及它们对深度学习未来发展的影响。通过这篇文章,读者将获得对深度学习在图像识别方面应用的全面理解,包括其优势、局限和未来的发展方向。
19 1