.net core实践系列之短信服务-架构优化(一)

简介: .net core实践系列之短信服务-架构优化(一)

前言


通过前面的几篇文章,讲解了一个短信服务的架构设计与实现。然而初始方案并非100%完美的,我们仍可以对该架构做一些优化与调整。


同时我也希望通过这篇文章与大家分享一下,我的架构设计理念。


源码地址:https://github.com/SkyChenSky/Sikiro.SMS/tree/optimize (与之前的是另外的分支)


架构是设计的还是演变的?


架构


该词出自于建筑学。软件架构定义是指软件系统的基础结构,是系统中的实体及实体(服务)之间的关系所进行的抽象描述。而架构设计的目的是为了解决软件系统复杂度带来的问题。


复杂度


系统复杂度主要有下面几点:


  • 高可用
  • 高性能
  • 可扩展
  • 安全性
  • 维护成本
  • 用户规模


业务规模


系统的复杂度导致的直接原因是业务规模。为了用户流畅放心的使用产品,不得不提高系统性能与安全。当系统成为人们生活不可缺一部分时,避免机房停电、挖掘机挖断电缆导致的系统不可用,不得不去思考同城跨机房同步、异地多活的高可用方案。


答案并非二选一


我认为架构,需要在已知可见的业务复杂度与用户规模的基础上进行架构设计;伴随着技术积累与成长而对系统进行架构优化;用户的日益增长,业务的不断扩充,迫使了系统的复杂度增加,为了解决系统带来新的复杂度而进行架构演变。


因此,架构方案是在已有的业务复杂度、用户规模、技术积累度、人力时间成本等几个方面的取舍决策后的结果体现。


原架构


image.png


缺点分析


  • 一般情况下,调度任务轮询数据库,90%的动作是无用功,频繁的数据库访问会对数据库增加不少压力。
  • 为了让调度任务服务进行轮循数据,需要在API优先进行数据持久化,这无疑是降低了API的性能。
  • MongoDB的Update操作相比于Insert操作时低效的,对于日志类数据应增量添加。


因此从上述可见,调度任务服务这块是优化关键点所在。


新架构图


image.png


  • 使用了RabbitMQ的队列定时任务代替调度任务来实现定时发送。
  • 抛弃了调度任务,减少了调用链,同时也减少了应用服务数据量。
  • 对SMS集合在MongoDB里进行按年月的时间划分,对于日志类数据可以在有效的时间范围外进行方便的归档、删除。同时也避免了同集合的数据量过大导致的查询效率缓慢。


队列定时任务


RabbitMQ自身并没有定时任务,然而可以通过消息的Time-To-Live(过期时间)与Dead Letter Exchange(死信交换机)的结合模拟定时发布的功能。具体原理如下:


  • 生产者发布消息,并发布到已申明消息过期时间(TTL)的缓存队列(非真正业务消费队列)
  • 消息在缓存队列等待消息过期,然后由Dead Letter Exchange将消息重新分配到实际消费队列
  • 消费者再从实际消费队列消费并完成业务

 

image.png


Dead Letter Exchange


Dead Letter Exchange与平常的Exchange无异,主要用于消息死亡后通过Dead Letter Exchange与x-dead-letter-routing-key重新分配到新的队列进行消费处理。


消息死亡的方式有三种:


  • 消息进入了一条已经达到最大长度的队列
  • 消息因为设置了Time-To-Live的导致过期
  • 消息因basic.reject或者basic.nack动作而拒绝


Time-To-Live


两种消息过期的方式:


队列申明x-message-ttl参数
var args = new Dictionary<string, object>();
args.Add("x-message-ttl", 60000);
model.QueueDeclare("myqueue", false, false, false, args);
每条消息发布声明Expiration参数
byte[] messageBodyBytes = System.Text.Encoding.UTF8.GetBytes("Hello, world!");
IBasicProperties props = model.CreateBasicProperties();
props.ContentType = "text/plain";
props.DeliveryMode = 2;
props.Expiration = "36000000"
model.BasicPublish(exchangeName,
                   routingKey, props,
                   messageBodyBytes);


RabbitMQ.Client队列定时任务Demo


class Program
    {
        static void Main(string[] args)
        {
            var factory = new ConnectionFactory
            {
                HostName = "10.1.20.140",
                UserName = "admin",
                Password = "admin@ucsmy"
            };
            using (var connection = factory.CreateConnection())
            using (var channel = connection.CreateModel())
            {
                var queueName = "Queue.SMS.Test";
                var exchangeName = "Exchange.SMS.Test";
                var key = "Route.SMS.Test";
                DeclareDelayQueue(channel, exchangeName, queueName, key);
                DeclareReallyConsumeQueue(channel, exchangeName, queueName, key);
                var body = Encoding.UTF8.GetBytes("info: test dely publish!");
                channel.BasicPublish(exchangeName + ".Delay", key, null, body);
            }
        }
        private static void DeclareDelayQueue(IModel channel, string exchangeName, string queueName, string key)
        {
            var retryDic = new Dictionary<string, object>
            {
                {"x-dead-letter-exchange", exchangeName+".dl"},
                {"x-dead-letter-routing-key", key},
                {"x-message-ttl", 30000}
            };
            var ex = exchangeName + ".Delay";
            var qu = queueName + ".Delay";
            channel.ExchangeDeclare(ex, "topic");
            channel.QueueDeclare(qu, false, false, false, retryDic);
            channel.QueueBind(qu, ex, key);
        }
        private static void DeclareReallyConsumeQueue(IModel channel, string exchangeName, string queueName, string key)
        {
            var ex = exchangeName + ".dl";
            channel.ExchangeDeclare(ex, "topic");
            channel.QueueDeclare(queueName, false, false, false);
            channel.QueueBind(queueName, ex, key);
        }
    }


目录
相关文章
|
2月前
|
算法 物联网 定位技术
蓝牙室内定位技术解决方案:核心技术架构与优化实践
本文探讨了蓝牙iBeacon与Lora结合的室内定位技术,分析其在复杂室内环境中的优势与挑战。通过三层架构实现高精度定位,并提出硬件、算法与部署优化方向,助力智慧仓储、医疗等场景智能化升级。
137 0
蓝牙室内定位技术解决方案:核心技术架构与优化实践
|
2月前
|
数据采集 人工智能 安全
开源赋能双碳:MyEMS 能源管理系统的架构与实践价值
在全球碳中和趋势与“双碳”目标推动下,能源管理趋向精细化与智能化。MyEMS是一款基于Python开发的开源能源管理系统,具备灵活适配、功能全面的优势,覆盖工厂、建筑、数据中心等多元场景。系统支持能源数据采集、分析、可视化及设备管理、故障诊断、AI优化控制等功能,提供“监测-分析-优化”闭环解决方案。遵循“国家+省级+接入端”三级架构,MyEMS在重点用能单位能耗监测中发挥关键作用,助力实现能源效率提升与政策合规。开源模式降低了技术门槛,推动“双碳”目标落地。
112 0
|
2月前
|
人工智能 物联网 机器人
面向多模态感知与反思的智能体架构Agentic AI的实践路径与挑战
Agentic AI(能动智能体)代表人工智能从被动响应向主动规划、自主决策的范式转变。本文系统解析其核心架构,涵盖感知、记忆、意图识别、决策与执行五大模块,并探讨多智能体协作机制与通信协议设计。结合代码示例,展示意图识别、任务规划与异步执行的实现方式,分析该架构的优势与挑战,如高自主性与通信复杂性等问题。最后展望未来方向,包括引入RAG、LoRA与多模态感知等技术,推动Agentic AI在自动编程、机器人协作等场景的广泛应用。
面向多模态感知与反思的智能体架构Agentic AI的实践路径与挑战
|
4月前
|
监控 Linux 应用服务中间件
Linux多节点多硬盘部署MinIO:分布式MinIO集群部署指南搭建高可用架构实践
通过以上步骤,已成功基于已有的 MinIO 服务,扩展为一个 MinIO 集群。该集群具有高可用性和容错性,适合生产环境使用。如果有任何问题,请检查日志或参考MinIO 官方文档。作者联系方式vx:2743642415。
1075 57
|
3月前
|
消息中间件 存储 Kafka
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
1674 7
 一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
|
3月前
|
存储 缓存 运维
微信读书十周年,后台架构的技术演进和实践总结
微信读书经过了多年的发展,赢得了良好的用户口碑,后台系统的服务质量直接影响着用户的体验。团队多年来始终保持着“小而美”的基因,快速试错与迭代成为常态。后台团队在日常业务开发的同时,需要主动寻求更多架构上的突破,提升后台服务的可用性、扩展性,以不断适应业务与团队的变化。
124 0
|
4月前
|
人工智能 监控 前端开发
基于 Next.js 的书法字体生成工具架构设计与 SSR 优化实践
本项目是一款书法字体生成工具,采用 Next.js 14(App Router)与 Tailwind CSS 构建前端,阿里云 Serverless 部署后端。通过混合渲染策略(SSG/SSR/CSR)、Web Worker 异步计算及 CDN 字体分片加载优化性能。服务端借助阿里云函数计算处理计算密集型任务,将平均耗时从 1200ms 降至 280ms,支持 1000+ QPS。动态路由与 ARMS 监控提升工程化水平,未来计划引入 WebGPU 和 AI 字体风格迁移技术,进一步优化用户体验。
|
云安全 安全 API
阿里云——OpenAPI使用——短信服务
阿里云——OpenAPI使用——短信服务
547 0
|
8月前
|
小程序
如何提升审核通过率?|阿里云短信服务
提升短信审核率的 tips 都在这里了哦!
544 15
|
12月前
|
数据采集 监控 安全
阿里云短信服务+图形认证,有效降低验证码盗刷概率
阿里云短信服务+图形认证服务,有效降低验证码盗刷概率。
987 3
阿里云短信服务+图形认证,有效降低验证码盗刷概率

热门文章

最新文章