《TensorFlow技术解析与实战》——1.4 什么是TensorFlow

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 本节书摘来自异步社区《TensorFlow技术解析与实战》一书中的第1章,第1.4节,作者李嘉璇,更多章节内容可以访问云栖社区“异步社区”公众号查看 第1章 人工智能概述 1.4 什么是TensorFlow 想想,在机器学习流行之前,我们是如何做与语音和图像相关的识别的?大多数是基于规则的系统。

本节书摘来自异步社区《TensorFlow技术解析与实战》一书中的第1章,第1.4节,作者李嘉璇,更多章节内容可以访问云栖社区“异步社区”公众号查看

1.4 什么是TensorFlow

想想,在机器学习流行之前,我们是如何做与语音和图像相关的识别的?大多数是基于规则的系统。例如,做自然语言处理,需要很多语言学的知识;再如,1997年的IBM的深蓝计算机对战国际象棋,也需要很多象棋的知识。

当以统计方法为核心的机器学习方法成为主流后,我们需要的领域知识就相对少了。重要的是做特征工程(feature engineering),然后调一些参数,根据一些领域的经验来不断提取特征,特征的好坏往往就直接决定了模型的好坏。这种方法的一大缺点是,对文字等抽象领域,特征还相对容易提取,而对语音这种一维时域信号和图像这种二维空域信号等领域,提取特征就相对困难。

深度学习的革命性在于,它不需要我们过多地提取特征,在神经网络的每一层中,计算机都可以自动学习出特征。为了实现深度学习中运用的神经网络,TensorFlow这样的深度学习开源工具就应运而生。我们可以使用它来搭建自己的神经网络。这就有点儿类似于PHP开发当中的CodeIgniter框架,Java开发当中的SSH三大框架,Python开发当中的Tornado、Django框架,C++当中的MFC、ACE框架。框架的主要目的就是提供一个工具箱,使开发时能够简化代码,呈现出来的模型尽可能简洁易懂。

相关文章
|
2月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
76 5
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
104 0
|
5月前
|
机器学习/深度学习 存储 前端开发
实战揭秘:如何借助TensorFlow.js的强大力量,轻松将高效能的机器学习模型无缝集成到Web浏览器中,从而打造智能化的前端应用并优化用户体验
【8月更文挑战第31天】将机器学习模型集成到Web应用中,可让用户在浏览器内体验智能化功能。TensorFlow.js作为在客户端浏览器中运行的库,提供了强大支持。本文通过问答形式详细介绍如何使用TensorFlow.js将机器学习模型带入Web浏览器,并通过具体示例代码展示最佳实践。首先,需在HTML文件中引入TensorFlow.js库;接着,可通过加载预训练模型如MobileNet实现图像分类;然后,编写代码处理图像识别并显示结果;此外,还介绍了如何训练自定义模型及优化模型性能的方法,包括模型量化、剪枝和压缩等。
79 1
|
5月前
|
机器学习/深度学习 数据采集 TensorFlow
使用TensorFlow进行模型训练:一次实战探索
【8月更文挑战第22天】本文通过实战案例详解使用TensorFlow进行模型训练的过程。首先确保已安装TensorFlow,接着预处理数据,包括加载、增强及归一化。然后利用`tf.keras`构建卷积神经网络模型,并配置训练参数。最后通过回调机制训练模型,并对模型性能进行评估。此流程为机器学习项目提供了一个实用指南。
|
4月前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
75 0
|
5月前
|
TensorFlow 算法框架/工具
【Tensorflow+Keras】tf.keras.backend.image_data_format()的解析与举例使用
介绍了TensorFlow和Keras中tf.keras.backend.image_data_format()函数的用法。
58 5
|
5月前
|
TensorFlow 算法框架/工具
【Python-Tensorflow】tf.concat()的解析与使用
介绍了TensorFlow中tf.concat()函数的用法,它用于将输入张量沿指定的axis维度合并。
61 3
|
5月前
|
UED 开发者
哇塞!Uno Platform 数据绑定超全技巧大揭秘!从基础绑定到高级转换,优化性能让你的开发如虎添翼
【8月更文挑战第31天】在开发过程中,数据绑定是连接数据模型与用户界面的关键环节,可实现数据自动更新。Uno Platform 提供了简洁高效的数据绑定方式,使属性变化时 UI 自动同步更新。通过示例展示了基本绑定方法及使用 `Converter` 转换数据的高级技巧,如将年龄转换为格式化字符串。此外,还可利用 `BindingMode.OneTime` 提升性能。掌握这些技巧能显著提高开发效率并优化用户体验。
71 0
|
5月前
|
API UED 开发者
如何在Uno Platform中轻松实现流畅动画效果——从基础到优化,全方位打造用户友好的动态交互体验!
【8月更文挑战第31天】在开发跨平台应用时,确保用户界面流畅且具吸引力至关重要。Uno Platform 作为多端统一的开发框架,不仅支持跨系统应用开发,还能通过优化实现流畅动画,增强用户体验。本文探讨了Uno Platform中实现流畅动画的多个方面,包括动画基础、性能优化、实践技巧及问题排查,帮助开发者掌握具体优化策略,提升应用质量与用户满意度。通过合理利用故事板、减少布局复杂性、使用硬件加速等技术,结合异步方法与预设缓存技巧,开发者能够创建美观且流畅的动画效果。
93 0
|
5月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
107 0