SpringloC容器的依赖注入源码解析(7)—— doCreateBean之剩余逻辑(解决循环依赖的源头)

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: doCreateBean之创建无属性的beandoCreateBean之处理@Autowired以及@Value标签

前置文章:


doCreateBean之创建无属性的bean

doCreateBean之处理@Autowired以及@Value标签


doCreateBean完整源码如下:

protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args)
      throws BeanCreationException {
   // Instantiate the bean.
   // bean实例包装类
   BeanWrapper instanceWrapper = null;
   if (mbd.isSingleton()) {
      // 从未完成创建的包装Bean缓存中清理并获取相关中的包装Bean实例,毕竟是单例的,只能存一份
      instanceWrapper = this.factoryBeanInstanceCache.remove(beanName);
   }
   if (instanceWrapper == null) {
      //创建bean的时候,这里创建bean的实例有三种方法
      // 1.工厂方法创建
      // 2.构造方法的方式注入
      // 3.无参构造方法注入
      instanceWrapper = createBeanInstance(beanName, mbd, args);
   }
   final Object bean = instanceWrapper.getWrappedInstance();
   Class<?> beanType = instanceWrapper.getWrappedClass();
   if (beanType != NullBean.class) {
      mbd.resolvedTargetType = beanType;
   }
   // Allow post-processors to modify the merged bean definition.
   // 调用BeanDefinition属性合并完成后的BeanPostProcessor后置处理器
   synchronized (mbd.postProcessingLock) {
      if (!mbd.postProcessed) {
         try {
            // 被@Autowired、@Value标记的属性在这里获取
            applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName);
         }
         catch (Throwable ex) {
            throw new BeanCreationException(mbd.getResourceDescription(), beanName,
                  "Post-processing of merged bean definition failed", ex);
         }
         mbd.postProcessed = true;
      }
   }
   // Eagerly cache singletons to be able to resolve circular references
   // even when triggered by lifecycle interfaces like BeanFactoryAware.
   boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
         isSingletonCurrentlyInCreation(beanName));
   if (earlySingletonExposure) {
      if (logger.isTraceEnabled()) {
         logger.trace("Eagerly caching bean '" + beanName +
               "' to allow for resolving potential circular references");
      }
      addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
   }
   // Initialize the bean instance.
   Object exposedObject = bean;
   try {
      populateBean(beanName, mbd, instanceWrapper);
      exposedObject = initializeBean(beanName, exposedObject, mbd);
   }
   catch (Throwable ex) {
      if (ex instanceof BeanCreationException && beanName.equals(((BeanCreationException) ex).getBeanName())) {
         throw (BeanCreationException) ex;
      }
      else {
         throw new BeanCreationException(
               mbd.getResourceDescription(), beanName, "Initialization of bean failed", ex);
      }
   }
   if (earlySingletonExposure) {
      Object earlySingletonReference = getSingleton(beanName, false);
      if (earlySingletonReference != null) {
         if (exposedObject == bean) {
            exposedObject = earlySingletonReference;
         }
         else if (!this.allowRawInjectionDespiteWrapping && hasDependentBean(beanName)) {
            String[] dependentBeans = getDependentBeans(beanName);
            Set<String> actualDependentBeans = new LinkedHashSet<>(dependentBeans.length);
            for (String dependentBean : dependentBeans) {
               if (!removeSingletonIfCreatedForTypeCheckOnly(dependentBean)) {
                  actualDependentBeans.add(dependentBean);
               }
            }
            if (!actualDependentBeans.isEmpty()) {
               throw new BeanCurrentlyInCreationException(beanName,
                     "Bean with name '" + beanName + "' has been injected into other beans [" +
                     StringUtils.collectionToCommaDelimitedString(actualDependentBeans) +
                     "] in its raw version as part of a circular reference, but has eventually been " +
                     "wrapped. This means that said other beans do not use the final version of the " +
                     "bean. This is often the result of over-eager type matching - consider using " +
                     "'getBeanNamesOfType' with the 'allowEagerInit' flag turned off, for example.");
            }
         }
      }
   }
   // Register bean as disposable.
   try {
      registerDisposableBeanIfNecessary(beanName, bean, mbd);
   }
   catch (BeanDefinitionValidationException ex) {
      throw new BeanCreationException(
            mbd.getResourceDescription(), beanName, "Invalid destruction signature", ex);
   }
   return exposedObject;
}


接上文分析到的位置,接下来执行:


// 向容器中缓存单例模式的Bean对象,以防循环引用
// 判断是否是早期引用的bean,如果是,则允许其提前暴露引用
// 这里判断的逻辑主要有三个:
// 1.是否为单例
// 2.是否允许循环引用
// 3.是否是在创建中的bean
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
      isSingletonCurrentlyInCreation(beanName));


之后会来到

// 这里是一个匿名内部类,为了防止循环引用,尽早持有对象的引用
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));


进入到addSingletonFactory:

protected void addSingletonFactory(String beanName, ObjectFactory<?> singletonFactory) {
   Assert.notNull(singletonFactory, "Singleton factory must not be null");
   synchronized (this.singletonObjects) {
      if (!this.singletonObjects.containsKey(beanName)) {
          // 往三级缓存里添加
         this.singletonFactories.put(beanName, singletonFactory);
         // 消除此Bean在二级缓存里的缓存信息
         this.earlySingletonObjects.remove(beanName);
         // 这里为了记录注册单例的顺序
         this.registeredSingletons.add(beanName);
      }
   }
}


消除此Bean在二级缓存里的缓存信息,将其包装成singletonFactory实例往三级缓存里添加


这里有一个重点就是Spring解决循环依赖的真相就在这一段源码中:在这里beanFactory被put进了singletonFactories,此时的bean只是完成了初始化构造的bean,还没有进行set或者注解注入的bean,是bean的一个中间状态,但是已经能被人认出来了,所以Spring此时将这个对象提前曝光出来让大家认识、使用。


回到doCreateBean,进入到getEarlyBeanReference


protected Object getEarlyBeanReference(String beanName, RootBeanDefinition mbd, Object bean) {
   Object exposedObject = bean;
   if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
      for (BeanPostProcessor bp : getBeanPostProcessors()) {
         // 如果是SmartInstantiationAwareBeanPostProcessor类型,就进行处理,
         // 如果没有相关处理内容,就返回默认的实例。
         // 里面的AbstractAutoProxyCreator类是后续AOP的关键
         if (bp instanceof SmartInstantiationAwareBeanPostProcessor) {
            SmartInstantiationAwareBeanPostProcessor ibp = (SmartInstantiationAwareBeanPostProcessor) bp;
            // 对单例进行AOP包装并返回的地方!
            exposedObject = ibp.getEarlyBeanReference(exposedObject, beanName);
         }
      }
   }
   return exposedObject;
}


注意这个方法并不是在doCreateBean的

addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));

这一行执行的,这里只是将getEarlyBeanReference注册进去,实际执行的地方是前面尝试从缓存里获取bean的地方,即AbstractBeanFactory的doCreateBean方法里。

回到doCreateBean,此时获取到了bean,并且只在三级缓存里面保存。

之后会执行


populateBean(beanName, mbd, instanceWrapper);

来将bean的属性真正注入到里面,然后再调用initializeBean进行彻底的初始化

// Initialize the bean instance.
// Bean对象的初始化,依赖注入在此触发
// 这个exposedObject在初始化完成之后返回作为依赖注入完成后的Bean
Object exposedObject = bean;
try {
   // 填充bean实例的属性
   populateBean(beanName, mbd, instanceWrapper);
   // 初始化bean,过程如下:
   // 1. 判断是否实现了BeanNameAware, BeanClassLoaderAware, BeanFactoryAware方法,如果有,则设置相关的属性
   // 2. 调用bean初始化的前置(BeanPostProcessor)操作
   // 3. 执行初始化的方法
   //       如果有initializingBean,则调用afterPropertiesSet
   //       如果有InitMethod,则调用初始方法
   // 4. 调用bean初始化的后置(BeanPostProcessor)操作
   exposedObject = initializeBean(beanName, exposedObject, mbd);
}



之后判断该bean是否允许提前暴露,

if (earlySingletonExposure) {
   // 获取指定名称的已注册的单例模式Bean对象
   Object earlySingletonReference = getSingleton(beanName, false);
   if (earlySingletonReference != null) {
      // 如果经过initializeBean执行后返回的bean还是同一个(不是代理对象实例,即没有被增强)
      if (exposedObject == bean) {
         // 确保根据名称获取到的的已注册的Bean和正在实例化的Bean是同一个
         exposedObject = earlySingletonReference;
      }
     ......
   }
}


if 里面调用了getSingleton方法,进入该方法:

@Nullable
protected Object getSingleton(String beanName, boolean allowEarlyReference) {
   Object singletonObject = this.singletonObjects.get(beanName);
   if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
      synchronized (this.singletonObjects) {
         singletonObject = this.earlySingletonObjects.get(beanName);
         if (singletonObject == null && allowEarlyReference) {
            ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
            if (singletonFactory != null) {
               singletonObject = singletonFactory.getObject();
               this.earlySingletonObjects.put(beanName, singletonObject);
               this.singletonFactories.remove(beanName);
            }
         }
      }
   }
   return singletonObject;
}


和之前提到的是同一个方法,由于这时bean已经被放到三级缓存里了,所以会被从三级缓存里取出


singletonObject = singletonFactory.getObject();

获取到bean实例之后会将其从三级缓存里移除


this.singletonFactories.remove(beanName);

回到doCreateBean,

Object earlySingletonReference = getSingleton(beanName, false);


执行完毕之后再判断一下

if (exposedObject == bean) {
   // 确保根据名称获取到的的已注册的Bean和正在实例化的Bean是同一个
   exposedObject = earlySingletonReference;
}


exposedObject由于之前调用了initializeBean方法,所以有可能会被赋值为全新的对象,一旦被赋值了全新的对象之后if里面是false,进入到前面的initializeBean方法里

12.png


重点关注applyBeanPostProcessorsAfterInitialization方法,进入到方法里:


13.png

重点关注实现了postProcessAfterInitialization方法的AbstractAutoProxyCreator类


@Override
public Object postProcessAfterInitialization(@Nullable Object bean, String beanName) {
   if (bean != null) {
      Object cacheKey = getCacheKey(bean.getClass(), beanName);
      if (this.earlyProxyReferences.remove(cacheKey) != bean) {
         return wrapIfNecessary(bean, beanName, cacheKey);
      }
   }
   return bean;
}


该方法尝试从缓存里获取bean实例并返回,即如果先前加工过的话就返回bean实例,确保加工过的bean实例和先前是同一个。


回到doCreateBean,


if (exposedObject == bean) {
   // 确保根据名称获取到的的已注册的Bean和正在实例化的Bean是同一个
   exposedObject = earlySingletonReference;
}else if (!this.allowRawInjectionDespiteWrapping && hasDependentBean(beanName)) {
   String[] dependentBeans = getDependentBeans(beanName);
   Set<String> actualDependentBeans = new LinkedHashSet<>(dependentBeans.length);
   // 获取依赖于当前Bean的Bean实例
   for (String dependentBean : dependentBeans) {
      if (!removeSingletonIfCreatedForTypeCheckOnly(dependentBean)) {
         actualDependentBeans.add(dependentBean);
      }
   }
   if (!actualDependentBeans.isEmpty()) {
      throw new BeanCurrentlyInCreationException(beanName,
            "Bean with name '" + beanName + "' has been injected into other beans [" +
            StringUtils.collectionToCommaDelimitedString(actualDependentBeans) +
            "] in its raw version as part of a circular reference, but has eventually been " +
            "wrapped. This means that said other beans do not use the final version of the " +
            "bean. This is often the result of over-eager type matching - consider using " +
            "'getBeanNamesOfType' with the 'allowEagerInit' flag turned off, for example.");
   }
}

如果不是同一个bean,则有可能经过initializeBean之后没有返回同样的bean实例,之所以会出现这个问题是因为postProcessor也是供用户使用的,用户可能在自定义逻辑里修改了bean实例,用户的行为对于系统来说是无法预测的。



不一样的话就会检查有没有别的bean依赖于这个bean,如果存在则直接报错,因为既然执行到这里其他bean实例就已经执行过了populate方法将该bean的实例设置上了,然而设置上了之后却又创建出了该bean的新实例,于是就不满足单例。



通过验证之后会注册销毁时候的回调逻辑


registerDisposableBeanIfNecessary(beanName, bean, mbd);



相关文章
|
1天前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
24 10
|
16天前
|
设计模式 XML Java
【23种设计模式·全精解析 | 自定义Spring框架篇】Spring核心源码分析+自定义Spring的IOC功能,依赖注入功能
本文详细介绍了Spring框架的核心功能,并通过手写自定义Spring框架的方式,深入理解了Spring的IOC(控制反转)和DI(依赖注入)功能,并且学会实际运用设计模式到真实开发中。
【23种设计模式·全精解析 | 自定义Spring框架篇】Spring核心源码分析+自定义Spring的IOC功能,依赖注入功能
|
1月前
|
开发框架 安全 开发者
Docker 是一种容器化技术,支持开发者将应用及其依赖打包成容器,在不同平台运行而无需修改。
Docker 是一种容器化技术,支持开发者将应用及其依赖打包成容器,在不同平台运行而无需修改。本文探讨了 Docker 在多平台应用构建与部署中的作用,包括环境一致性、依赖管理、快速构建等优势,以及部署流程和注意事项,展示了 Docker 如何简化开发与部署过程,提高效率和可移植性。
67 4
|
1月前
|
负载均衡 网络协议 算法
Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式
本文探讨了Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式,以及软件负载均衡器、云服务负载均衡、容器编排工具等实现手段,强调两者结合的重要性及面临挑战的应对措施。
86 3
|
2月前
|
安全 持续交付 Docker
深入理解并实践容器化技术——Docker 深度解析
深入理解并实践容器化技术——Docker 深度解析
75 2
|
2月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
2月前
|
运维 持续交付 虚拟化
深入解析Docker容器化技术的核心原理
深入解析Docker容器化技术的核心原理
59 1
|
3月前
|
缓存 前端开发 JavaScript
前端的全栈之路Meteor篇(二):容器化开发环境下的meteor工程架构解析
本文详细介绍了使用Docker创建Meteor项目的准备工作与步骤,解析了容器化Meteor项目的目录结构,包括工程准备、环境配置、容器启动及项目架构分析。提供了最佳实践建议,适合初学者参考学习。项目代码已托管至GitCode,方便读者实践与交流。
|
3月前
|
存储 应用服务中间件 云计算
深入解析:云计算中的容器化技术——Docker实战指南
【10月更文挑战第14天】深入解析:云计算中的容器化技术——Docker实战指南
98 1
|
3月前
|
Java 测试技术 数据安全/隐私保护
📖Java零基础-while循环语句的深度解析
【10月更文挑战第6天】本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!
58 1

推荐镜像

更多
下一篇
开通oss服务