干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(一)

简介: 干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)

前言

一个月前,人工智能对我来说都是很陌生的,更不用说神经网络、强化学习、DQN等名词了。疫情期间,经过在家努力学习,我对这些概念越来越清晰了,也越来越喜欢上了它们。微信图片_20220423105924.gif

下面,我想写一些收获,希望能给同样想在这方面学习的小伙伴一点启发,也欢迎大家指教,一起进步哦。今天的内容主要有以下几方面:

  • 什么是神经网络
  • tensorflow的安装和开发环境的配置
  • 强化学习Q_Learning
  • 深度神经网络DQN
  • 利用DQN开发的贪吃蛇程序

后续我将分三篇来进行该主题的分享,让我们开始吧!

什么是神经网络

神经网络原本指的是生物神经网络,人工智能兴起后,产生了人工神经网络(artificial neural network,缩写ANN)。人的神经接受信息以后,通过轴突传至末梢,转化成一种人可接受的信息。

而ANN是指由大量的处理单元(神经元) 互相连接而形成的复杂网络结构,是对人脑组织结构和运行机制的某种抽象、简化和模拟,以数学模型模拟神经元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。

微信图片_20220423105927.png生物神经网络图

神经网络主要由:输入层、隐藏层、输出层构成。如图,最左边的一层称为输入层,位于这一层的神经元称为输入神经元。最右边的输出层包含了输出神经元。中间的层被称为隐藏层。隐藏层就是既不是输入也不是输出的层次,一个神经网络可以有一个或多个隐藏层。

微信图片_20220423105929.jpg神经网络构成

网络中的输入和输出层一般都被设计的很简单。网络输入层的每个神经元代表了一个特征,输出层个数代表了分类标签的个数。而隐藏层的设计比较复杂,隐藏层作用很大,就其本身而言,每一层都可以视为一个单独的机器学习算法。

每个隐藏层神经元/输出层神经元的值(激活值),都是由上一层神经元,经过加权求和与非线性变换而得到的。上游层的输出被用作输入,它的输出被传递到下一层,然后下一层使用该输出作为输入,依此类推。

此行为意味着,当堆叠各种层和创建深度神经网络时,系统会学习数据的中间表示,以帮助下游层更有效地完成其工作。现在,神经网络的研究人员已经开发了隐藏层的许多的最优设计规则,帮助我们决定如何权衡网络的隐藏层数和训练网络所需的时间。

总结:建立神经网络的方法:建立M个隐藏层,按顺序建立输入层跟隐藏层的联结,最后建立隐藏层跟输出层的联结。为每个隐藏层的每个节点选择激活函数。求解每个联结的权重和每个节点自带的bias值。

下面重点描述下神经网络中的概念。

结构:结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重和神经元的激励值。激活函数(激励函数)与权重

权重:通俗来讲就是各个变量在计算中所占比重。举个简单的例子,大学的每一门科目都有相应的学分,这个学分意味着在加权时所占的比重,我们假设哲学占5学分,数学3学分,就有得到值A。在神经元中,这个值会被带入激活函数进一步处理。

此处还涉及到偏值b,其大概相当于一次函数的截距,我们通过b来适当控制值的范围。常见激活函数如下:

微信图片_20220423105932.png激活函数

损失函数:如下公式,此处为得到的输出值,则是期望值,当函数值趋于零,就得到了理想的输出值(不一定是最好的)。从数学的角度来讲,我们写出的损失函数,在输出值趋于期望时,函数值要尽可能快的趋于零,如果在绝对值外添加次方,即可达到这一效果。

根据损失函数的大小,我们以此来调整权重和偏值,寻找最优解。

学习规则:指定了网络中的权重如何随着时间推进而调整。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。

相关文章
|
7天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
7天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
7天前
|
人工智能 算法 安全
人工智能在医疗诊断中的应用与前景####
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战以及未来的发展趋势。随着科技的不断进步,AI技术正逐步渗透到医疗行业的各个环节,尤其在提高诊断准确性和效率方面展现出巨大潜力。通过分析当前AI在医学影像分析、疾病预测、个性化治疗方案制定等方面的实际应用案例,我们可以预见到一个更加智能化、精准化的医疗服务体系正在形成。然而,数据隐私保护、算法透明度及伦理问题仍是制约其进一步发展的关键因素。本文还将讨论这些挑战的可能解决方案,并对AI如何更好地服务于人类健康事业提出展望。 ####
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
7天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
36 3
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在教育领域的应用与挑战
随着科技的不断进步,人工智能(AI)技术已经深入到社会的各个领域,其中教育领域尤为突出。本文旨在探讨人工智能在教育领域的应用现状、面临的挑战以及未来的发展趋势。通过分析AI技术如何改变传统教学模式,提高教育质量和效率,同时指出其在实际应用中可能遇到的问题和挑战,为未来教育的发展提供参考。
72 2
|
10天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
44 10
|
10天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
10天前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。
|
8天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
36 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
下一篇
无影云桌面