干货 | Python爬虫实战:两点间的真实行车时间与路况分析(一)

简介: 干货 | Python爬虫实战:两点间的真实行车时间与路况分析(上)

前言

大家好,我又又来来来来了!在这里先祝大家身体健康,天天开心!

微信图片_20220423102357.gif

虽然放假,在家里小玮同学也没有休息,这一次给大家带来的是利用爬虫爬取地图软件的相关数据,并制作成图表进行分析。

微信图片_20220423102400.png

为什么突然想做一期关于爬虫的内容呢?其实是因为前段时间收到老师的任务,研究一下现实中两点之间的旅行时间是否受出发时间的影响。

这个题目可把当时的小玮吓坏了--python我都还没有开始学习呢--咋就叫我做这么有难度的事情。

微信图片_20220423102402.png

看了几天的python基础知识,了解了爬虫的相关知识,最终还是勉勉强强地完成了任务,现在把这段时间的体会写出来,让各位看客老爷们检查。

微信图片_20220423102404.jpg

Python的基本语法内容呢,在这里就不多说了。

因为在本次爬取数据的过程中,我们用的和python相关的知识并不是很复杂,不需要给大家介绍别的东西,大家完全可以在具体的过程中就可以学会本次爬取需要的东西。

鉴于整个流程涉及到的知识很广我们分成三篇推文来讲解,本篇推文的内容是《数据爬取》

目录


  • 问题的分析
  • 简单的准备
  • 寻找高校
  • 获取相应地点的坐标
  • 制作excel表格
  • 相应时间的获取
  • 开始我们的工作
  • 进入目标网页
  • 爬取目标内容
  • 定时操作
  • 小小的总结

问题的分析

Q:现实中两点的旅行时间是否受到出发时间的影响呢?这是什么意思呢,因为每个时间段的路况不同,比如早高峰晚高峰等等,两点之间的实际旅行时间就有可能受到出发时间的影响。

微信图片_20220423102406.gif

好了,现在问题清楚了。下面我们选取武汉的一些高校作为测试点,给大家演示如何提取相应的数据进行分析。(武汉快点好起来呀!小编好想去上学!)

首先我们需要关注的点有以下几个:

  • 武汉著名的高校包括哪些大学
  • 旅行的出发点和终点的坐标
  • 旅行的出发时间,旅行所用时间
  • 如何对所收集的数据进行可视化处理
  • 如何对数据进行分析

简单的准备

寻找高校

寻找高校这个步骤很简单,在这里我是直接通过百度获取的。

微信图片_20220423102409.png

获取相应地点的坐标

获取比如说通过某某路段的时间,某某点的坐标,我们通常是进入百度地图官网为开发者提供API服务。百度开发者平台的账号注册,创建应用等等操作在这里就不多说了。

在这里指出我们需要注意的一个地方,在请求验证方式这个地方,要记住使用IP白名单,然后下面推荐填0.0.0.0/0,具体的原因会在后面给出。微信图片_20220423102411.png

完成了这个步骤之后,我们就可以在开发文档里选择坐标选取器。获取我们目标点的坐标。

微信图片_20220423102413.png进入之后搜索相应的地点就可以知道其坐标。这里将我找到我坐标放在下面。

微信图片_20220423102415.jpg

相关文章
|
27天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
84 35
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
64 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
28天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
251 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
1月前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
106 61
Python装饰器实战:打造高效性能计时工具
|
18天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
97 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
80 37
Python时间序列分析工具Aeon使用指南
|
1天前
|
数据采集 存储 数据挖掘
深入剖析 Python 爬虫:淘宝商品详情数据抓取
深入剖析 Python 爬虫:淘宝商品详情数据抓取
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
75 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
4天前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
28天前
|
运维 Shell 数据库
Python执行Shell命令并获取结果:深入解析与实战
通过以上内容,开发者可以在实际项目中灵活应用Python执行Shell命令,实现各种自动化任务,提高开发和运维效率。
56 20

热门文章

最新文章

推荐镜像

更多