干货|蚁群算法求解带时间窗的车辆路径规划问题详解(附Java代码)

简介: 干货|蚁群算法求解带时间窗的车辆路径规划问题详解(附Java代码)

学 习 警 告

一眨眼春节又过去了,相信很多同学也和小编一样,度过了一段时间相对轻松的时光。

当然,玩耍过后也不能忘记学习。本着~造福人类~的心态,小编又开始干活,为大家带来 有 · 趣 的干货算法内容了!

微信图片_20220423093734.jpg


本期为大家带来的内容是蚁群算法,解决大家熟悉的带时间窗的车辆路径规划问题。关于蚁群算法,公众号内已经有相关内容介绍TSP:

干货 | 十分钟快速搞懂什么是蚁群算法(Ant Colony Algorithm, ACA)(附代码)

本文主要分为以下部分:

蚁群算法简介

蚁群算法与VRPTW

代码测试

笔记总结



01


蚁群算法简介

蚁群系统(Ant System或Ant Colony System)一种群体仿生类算法,灵感来源于在蚂蚁觅食的过程。学者们发现,单个蚂蚁的行为比较简单,但是蚁群整体却可以体现一些智能的行为,例如可以在不同的环境下找到到达食物源的最短路径

经进一步研究发现,蚂蚁会在其经过的路径上释放一种可以称之为“信息素”(phenomenon)的物质,蚁群内的蚂蚁对信息素具有感知能力,它们会沿着信息素浓度较高路径行走,而每只路过的蚂蚁都会在路上留下信息素。这样经过一段时间后,整个蚁群就会沿着最短路径到达食物源了。

微信图片_20220423093737.png

蚁群算法通过模仿蚂蚁“每次在经过的较短路径上留下信息素”的行为,通过信息素记录下较优结果,不断逼近最优解。


02


蚁群算法与VRPTW

VRPTW在之前的推文里已经提到过多次了,这里不再详细介绍。感兴趣的朋友可以看过去的推文:

禁忌搜索算法求解带时间窗的车辆路径规划问题详解(附Java代码)

通过上面的介绍,大家不难想到,蚁群算法的关键在于信息素的利用。在蚁群寻找食物时,每次都由一只蚂蚁从头开始寻找(不同于禁忌搜索或遗传算法的邻域动作);每次寻找的不同点在于信息素的改变:不断靠近信息素较浓的路径


用蚁群算法解决VRPTW的过程主要分为以下几步:


1.初始化蚂蚁信息(以下用agents表示);

2.为每位agents构造完整路径;

3.更新信息素;

4.迭代,保存最优解。

 

算法的关键在第二步:构造解时该如何查找下一个服务的客户。

我们用以下公式计算客户j被服务的概率:




微信图片_20220423093741.jpg微信图片_20220423093744.jpg微信图片_20220423093747.jpg微信图片_20220423093749.jpg




03


代码测试

这次代码是由小编亲自编写的,由于是第一次编写ACS的VRPTW代码,有不周之处还请多包涵。


因为小编太懒了,具体代码就不在此展示了,有兴趣的朋友可以在公众号内输入【ACSVRP】不带【】即可下载对应Java代码。




这里展示一下代码的运行情况。对Solomon Benchmark C101算例的测试效果如下:


25点(迭代次数1000,算例最优解191.3):

微信图片_20220423093947.jpg

50点(迭代次数1000,算例最优解362.4):

微信图片_20220423093951.jpg

100点(迭代次数1000,算例最优解827.3):

微信图片_20220423093953.jpg

从测试数据来看,结果似乎不是很好。。。不过,VRPTW仅是一个载体,目的是为了深入了解蚁群算法的运行机制。
小编在测试时发现,参数设置地不同对结果还是有一定影响的。算法偶尔会跑出单个点构成的路径,小编认为应该加大时间窗对应参数w_2,效果有一些提升。推荐的参数已经默认设置在代码中。

同时,蚁群算法也有其他仿生类算法的特点,比较容易早熟。这点在测试100点数据是尤为明显,全局最优解可能与前100次迭代的最优解相同。




04


笔记总结

大致了解了蚁群算法对VRPTW的求解过程后,我的第一感觉是,和禁忌搜索的思路其实很像:两者都是利用过去搜索的“记忆”指导下一步走向。禁忌禁止一些方向,信息素引导一些方向。但两者又有很大区别:禁忌搜索作为邻域搜索类算法,每次都在旧解里变换出新解;蚁群算法却需要重新派出蚂蚁走完全程。对比之下,每次迭代时蚁群算法可能需要跟更多花费时间。从测试结果来看,蚁群算法确实没有禁忌搜索高效。当然,这可能和小编个人编写代码的能力有关。


但不可否认的是,大自然的智慧确实不同寻常,在每一个领域都闪耀着光辉,如此美妙绝伦。


微信图片_20220423093956.jpg

(小小的蚂蚁,也蕴藏着让人意想不到的智慧呢!)


相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
73 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
28天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
74 2
|
1月前
|
算法 数据可视化 新制造
Threejs路径规划_基于A*算法案例完整版
这篇文章详细介绍了如何在Three.js中完整实现基于A*算法的路径规划案例,包括网格构建、路径寻找算法的实现以及路径可视化展示等方面的内容。
62 0
Threejs路径规划_基于A*算法案例完整版
|
1月前
|
存储 算法 机器人
Threejs路径规划_基于A*算法案例V2
这篇文章详细介绍了如何在Three.js中使用A*算法进行高效的路径规划,并通过三维物理电路的实例演示了路径计算和优化的过程。
60 0
|
2月前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
3月前
|
自然语言处理 算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
59 0
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
|
3月前
|
算法 Java
HanLP — HMM隐马尔可夫模型 -- 维特比(Viterbi)算法 --示例代码 - Java
HanLP — HMM隐马尔可夫模型 -- 维特比(Viterbi)算法 --示例代码 - Java
45 0
|
3月前
|
算法 定位技术
路径规划算法 - 求解最短路径 - A*(A-Star)算法
路径规划算法 - 求解最短路径 - A*(A-Star)算法
91 0
|
3月前
|
算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
70 0
下一篇
无影云桌面