NVIDIA Tesla GPU系列P4、T4、P40以及V100参数性能对比

简介: NVIDIA Tesla系列GPU适用于高性能计算(HPC)、深度学习等超大规模数据计算,Tesla系列GPU能够处理解析PB级的数据,速度比使用传统CPU快几个数量级,NVIDIA Tesla GPU系列P4、T4、P40以及V100是Tesla GPU系列的明星产品,云服务器吧分享NVIDIA Tesla GPU系列P4、T4、P40以及V100参数性能对比:

 

一、关于NVIDIA TESLA系列GPU详细介绍如下:

NVIDIA TESLA V100

NVIDIA Tesla V100采用NVIDIA Volta架构,非常适合为要求极为苛刻的双精度计算工作流程提供加速,并且还是从P100升级的理想路径。该GPU的渲染性能比Tesla P100提升了高达80%,借此可缩短设计周期和上市时间。

Tesla V100的每个GPU均可提供125 teraflops的推理性能,配有8块Tesla V100的单个服务器可实现1 petaflop的计算性能。

NVIDIA TESLA P40

The Tesla P40能够提供高达2倍的专业图形性能。Tesla P40能够对组织中每个vGPU虚拟化加速图形和计算(NVIDIA CUDA® 和 OpenCL)工作负载。支持多种行业标准的2U服务器。

Tesla P40可提供出色的推理性能、INT8精度和24GB板载内存。

NVIDIA TESLA T4

NVIDIA Tesla T4的帧缓存高达P4的2倍,性能高达M60的2倍,对于利用NVIDIA Quadro vDWS软件开启高端3D设计和工程工作流程的用户而言,不失为一种理想的解决方案。凭借单插槽、半高外形特性以及低至70瓦的功耗,Tesla T4堪称为每个服务器节点实现最大GPU密度的绝佳之选。

NVIDIA TESLA P4

Tesla P4可加快任何外扩型服务器的运行速度,能效高达CPU的60倍。

 

二、NVIDIA Tesla GPU系列P4、T4、P40以及V100

NVIDIA Tesla系列GPUP4、T4、P40以及V100性能规格参数对比表,阿里云GPU云服务器提供的实例GN4(Nvidia M40)、GN5(Nvidia P100)、GN5i(Nvidia P4)及GN6(Nvidia V100),也会基于NVIDIA Tesla GPU系列。

云服务器 Tesla T4:世界领先的推理加速器 Tesla V100:通用数据中心 GPU 适用于超高效、外扩型服务器的 Tesla P4 适用于推理吞吐量服务器的 Tesla P40
单精度性能 (FP32) 8.1 TFLOPS 14 TFLOPS (PCIe) 15.7 teraflops (SXM2) 5.5 TFLOPS 12 TFLOPS
半精度性能 (FP16) 65 TFLOPS 112 TFLOPS (PCIe)125 TFLOPS (SXM2)
整数运算能力 (INT8) 130 TOPS 22 TOPS* 47 TOPS*
整数运算能力 (INT4) 260 TOPS
GPU 显存 16GB 32/16GB HBM2 8GB 24GB
显存带宽 320GB/秒 900GB/秒 192GB/秒 346GB/秒
系统接口/外形规格 PCI Express 半高外形 PCI Express 双插槽全高外形 SXM2/NVLink PCI Express 半高外形 PCI Express 双插槽全高外形
功率 70 W 250 W (PCIe) 300 W (SXM2) 50 W/75 W 250 W
硬件加速视频引擎 1 个解码引擎,2 个编码引擎 1 个解码引擎,2 个编码引擎 1 个解码引擎,2 个编码引擎

 

 

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
机器学习/深度学习 缓存 并行计算
NVIDIA Tesla GPU系列P4、T4、P40以及V100参数性能对比
NVIDIA Tesla系列GPU适用于高性能计算(HPC)、深度学习等超大规模数据计算,Tesla系列GPU能够处理解析PB级的数据,速度比使用传统CPU快几个数量级,NVIDIA Tesla GPU系列P4、T4、P40以及V100是Tesla GPU系列的明星产品,云服务器吧分享NVIDIA.
76051 1
|
机器学习/深度学习 虚拟化 数据中心
NVIDIA T4和A10:不同应用场景下的GPU加速器选择
在数据中心和云计算领域,GPU加速器扮演着至关重要的角色。NVIDIA T4和A10是两款适用于不同应用场景的GPU加速器。本文将比较它们的性能和适用场景,帮助读者更好地选择适合自己需求的GPU实例。
5000 0
|
人工智能 自然语言处理 安全
从 ChatGPT 到 AI 大模型私有化部署,为什么企业需要私有化专属大模型?
目前,大模型已经能够切实的影响到我们每个人的工作、学习、生活,赋能千行万业,但是开放的大模型却无法很好的适应企业或单位的内部需要,为此,此处研究并提出为什么企业需要私有化大模型,并探讨私有化大模型的优势和挑战,同时本文也举出了一些实践落地的例子,希望能给读者带来一些思考和启发。
|
JSON API 数据格式
5分钟构建API接口服务 | python小知识
Flask是python中轻量的web框架,Flask的两个核心模块除了模板渲染之外就是请求响应处理,其中请求响应处理是由 Werkzeug(WSGI 工具库)完成,而模板渲染是由Jinja(模板渲染库)完成。 Flask因为轻量灵活,用来构建API接口十分合适
10184 10
5分钟构建API接口服务 | python小知识
|
SQL 前端开发 关系型数据库
LLM大模型实战 —— DB-GPT阿里云部署指南
DB-GPT 是一个实验性的开源应用,它基于FastChat,并使用vicuna-13b作为基础模型, 模型与数据全部本地化部署, 绝对保障数据的隐私安全。 同时此GPT项目可以直接本地部署连接到私有数据库, 进行私有数据处理, 目前已支持SQL生成、SQL诊断、数据库知识问答、数据处理等一系列的工作。
8877 2
|
存储 人工智能 城市大脑
阿里云OpenTrek,七年封装再开放
七年砥砺琢磨的产业智能技术,一朝全部输出。2022阿里云合作伙伴大会上,产业智能OpenTrek平台的“行业数据平台能力”和“行业智能引擎能力”面向合作伙伴全面开放,至此,阿里云补上了产业数字化的又一块关键拼图——OpenTrek。
阿里云OpenTrek,七年封装再开放
|
缓存 运维 Kubernetes
NVIDIA GPU Operator分析一:NVIDIA驱动安装
背景我们知道,如果在Kubernetes中支持GPU设备调度,需要做如下的工作:节点上安装nvidia驱动节点上安装nvidia-docker集群部署gpu device plugin,用于为调度到该节点的pod分配GPU设备。除此之外,如果你需要监控集群GPU资源使用情况,你可能还需要安装DCCM exporter结合Prometheus输出GPU资源监控信息。要安装和管理这么多的组件,对于运维
4387 0
NVIDIA GPU Operator分析一:NVIDIA驱动安装
|
机器学习/深度学习 缓存 并行计算
NVIDIA Tesla GPU系列P4、T4、P40以及V100参数性能对比
NVIDIA Tesla系列GPU适用于高性能计算(HPC)、深度学习等超大规模数据计算,Tesla系列GPU能够处理解析PB级的数据,速度比使用传统CPU快几个数量级,NVIDIA Tesla GPU系列P4、T4、P40以及V100是Tesla GPU系列的明星产品,云服务器吧分享NVIDIA Tesla GPU系列P4、T4、P40以及V100参数性能对比:
|
6月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云GPU服务器全解析_GPU服务器租用费用_NVIDIA A10、V100、T4、P4、P100 GPU卡
阿里云GPU云服务器提供NVIDIA A10、V100、T4、P4、P100等多种GPU卡,结合高性能CPU,单实例计算性能高达5PFLOPS。支持2400万PPS及160Gbps内网带宽。实例规格多样,如A10卡GN7i(3213.99元/月)、V100-16G卡GN6v(3830.00元/月)等。适用于深度学习、科学计算、图形处理等场景。GPU软件如AIACC-Training、AIACC-Inference助力性能优化。购买方式灵活,客户案例包括深势科技、流利说、小牛翻译。
717 0
|
7月前
|
人工智能 前端开发 开发工具
Agent调研--19类Agent框架对比(上)
Agent调研--19类Agent框架对比(上)
8371 1