计算机视觉教程2-1:图解直方图均衡化原理+Python实战

简介: 计算机视觉教程2-1:图解直方图均衡化原理+Python实战

目录

1 点算子

点算子是两个像素灰度值间的映射关系,属于像素的逐点运算,相邻像素不参与运算。点算子是最简单的图像处理手段,如:亮度调整、对比度调整、颜色变换、直方图均衡化等等。

2 线性灰度变换

线性灰度变换表达为:


s k = T ( r k ) = a r k + b s_k=T\left( r_k \right) =ar_k+b

s

k


=T(r

k


)=ar

k


+b


其中 r k r_k r

k


、 s k s_k s

k


分别为输入、输出点像素灰度值。


image.png

当 a > 1 a>1 a>1时,输出图像像素灰度范围扩大,图像对比度增强,当 a < 1 a<1 a<1时反之。这是因为人眼不易区分相近的灰度值,因此若图像灰度值范围较小,观感上细节不够清晰。当 a = 1 a=1 a=1、 b ≠ 0 b\ne0 b


=0时,点算子使图像灰度整体上移或下移,即整体变亮或变暗。


image.png

3直方图均衡化

下图再次给出了关于图像对比度的例子


image.png

直方图均衡化是以累计分布函数为核心,将原始图像灰度直方图从比较集中的某个灰度区间,非线性地映射为在全部灰度范围内的较均匀分布,从而增强对比度

下面阐述直方图均衡化的数学原理。首先作原始图像灰度的概率直方图如图


image.png

设输入像素灰度值为 r k r_k r

k


,累计分布函数为

C ( r k ) = 1 n ∑ i = 0 k n i C\left( r_k \right) =\frac{1}{n}\sum_{i=0}^k{n_i}

C(r

k


)=

n

1


 

i=0

k


n

i



其中 n i n_i n

i


为图像中灰度值为 r i r_i r

i


的像素频数, n n n为图像像素总数。设输出像素灰度值为 s k s_k s

k


,像素范围为 s m i n − s m a x s_{min}-s_{max} s

min


−s

max


。期望输出灰度直方图是均匀分布,即


P ( s ) = 1 s max ⁡ − s min ⁡    s min ⁡ ⩽ s ⩽ s max ⁡ P\left( s \right) =\frac{1}{s_{\max}-s_{\min}}\,\, s_{\min}\leqslant s\leqslant s_{\max}

P(s)=

s

max


−s

min


1


s

min


⩽s⩽s

max



令 C ( s k ) = C ( r k ) C\left( s_k \right) =C\left( r_k \right) C(s

k


)=C(r

k


),即得


( C ( r k ) max ⁡ − C ( r k ) min ⁡ ) s k − s min ⁡ s max ⁡ − s min ⁡ + C ( r k ) min ⁡ = C ( r k ) ⇒    s k − s min ⁡ s max ⁡ − s min ⁡ = C ( r k ) − C ( r k ) min ⁡ C ( r k ) max ⁡ − C ( r k ) min ⁡ ⇒    s k − s min ⁡ s max ⁡ − s min ⁡ = C ′ ( r k ) \left( C\left( r_k \right) _{\max}-C\left( r_k \right) _{\min} \right) \frac{s_k-s_{\min}}{s_{\max}-s_{\min}}+C\left( r_k \right) _{\min}=C\left( r_k \right) \\\Rightarrow \,\, \frac{s_k-s_{\min}}{s_{\max}-s_{\min}}=\frac{C\left( r_k \right) -C\left( r_k \right) _{\min}}{C\left( r_k \right) _{\max}-C\left( r_k \right) _{\min}}\\\Rightarrow \,\, \frac{s_k-s_{\min}}{s_{\max}-s_{\min}}=C'\left( r_k \right)

(C(r

k


)

max


−C(r

k


)

min


)

s

max


−s

min


s

k


−s

min



+C(r

k


)

min


=C(r

k


)

s

max


−s

min


s

k


−s

min



=

C(r

k


)

max


−C(r

k


)

min


C(r

k


)−C(r

k


)

min



s

max


−s

min


s

k


−s

min



=C

(r

k


)


所以最终直方图均衡化的点算子为


s k = ( s max ⁡ − s min ⁡ ) C ′ ( r k ) + s min ⁡ = T ( r k ) s_k=\left( s_{\max}-s_{\min} \right) C'\left( r_k \right) +s_{\min}=T\left( r_k \right)

s

k


=(s

max


−s

min


)C

(r

k


)+s

min


=T(r

k


)

4 代码实战

按照前文的原理编写累积分布函数计算公式,以及均衡化算子

# 计算累计分布函数
def C(rk):
  # 读取图片灰度直方图
  # bins为直方图直方柱的取值向量
  # hist为bins各取值区间上的频数取值
  hist, bins = np.histogram(rk, 256, [0, 256])
  # 计算累计分布函数
  return hist.cumsum()
# 计算灰度均衡化映射
def T(rk):
  cdf = C(rk)
  # 均衡化
  cdf = (cdf - cdf.min()) * (255 - 0) / (cdf.max() - cdf.min()) + 0
  return cdf.astype('uint8')

均衡化时直接调用函数即可,下面给出完整代码

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
# 计算累计分布函数
def C(rk):
  # 读取图片灰度直方图
  # bins为直方图直方柱的取值向量
  # hist为bins各取值区间上的频数取值
  hist, bins = np.histogram(rk, 256, [0, 256])
  # 计算累计分布函数
  return hist.cumsum()
# 计算灰度均衡化映射
def T(rk):
  cdf = C(rk)
  # 均衡化
  cdf = (cdf - cdf.min()) * (255 - 0) / (cdf.max() - cdf.min()) + 0
  return cdf.astype('uint8')
# 读取图片
img = cv.imread('1.png', 0)
# 将二维数字图像矩阵转变为一维向量
rk = img.flatten()
# 原始图像灰度直方图
plt.hist(rk, 256, [0, 255], color = 'r')
cv.imshow("原图像",img)
# 直方图均衡化
imgDst = T(rk)[img]
cv.imshow("直方图均衡化后的图像",imgDst)
plt.hist(imgDst.flatten(), 256, [0, 255], color = 'b')
plt.show()

看看效果:

339ba18b9d8b44259964167cb6b1a883.png

均衡化前:

image.png

均衡化后:

image.png

🚀 计算机视觉基础教程说明


章号                                    内容

 0                              色彩空间与数字成像

 1                              计算机几何基础

 2                              图像增强、滤波、金字塔

 3                              图像特征提取

 4                              图像特征描述

 5                              图像特征匹配

 6                              立体视觉

 7                              项目实战


🔥 更多精彩专栏:


《机器人原理与技术》

《计算机视觉教程》

《机器学习》

《嵌入式系统》

《数值优化方法》


目录
相关文章
|
8天前
|
Linux 网络安全 Python
linux centos上安装python3.11.x详细完整教程
这篇文章提供了在CentOS系统上安装Python 3.11.x版本的详细步骤,包括下载、解压、安装依赖、编译配置、解决常见错误以及版本验证。
64 1
linux centos上安装python3.11.x详细完整教程
|
6天前
|
调度 Python
揭秘Python并发编程核心:深入理解协程与异步函数的工作原理
在Python异步编程领域,协程与异步函数成为处理并发任务的关键工具。协程(微线程)比操作系统线程更轻量级,通过`async def`定义并在遇到`await`表达式时暂停执行。异步函数利用`await`实现任务间的切换。事件循环作为异步编程的核心,负责调度任务;`asyncio`库提供了事件循环的管理。Future对象则优雅地处理异步结果。掌握这些概念,可使代码更高效、简洁且易于维护。
10 1
|
7天前
|
Python Windows
python入门保姆级教程 | 13
python入门保姆级教程 | 13
|
12天前
|
测试技术 开发者 Python
深入浅出:Python中的装饰器使用与原理解析
【9月更文挑战第20天】本文深入探讨Python中一个强大而神秘的功能——装饰器。通过浅显易懂的语言和生动的比喻,我们将一步步揭开装饰器的面纱,理解其背后的原理,并通过实际代码示例掌握如何运用装饰器来增强我们的函数功能。无论你是初学者还是有一定基础的开发者,这篇文章都将带给你新的启发和思考。
28 7
|
9天前
|
API 开发者 Python
Python中的魔法方法:从原理到实践
【9月更文挑战第24天】本文将深入探讨Python的魔法方法,这些特殊的方法允许对象定制其行为。文章首先揭示魔法方法的本质和重要性,然后通过代码示例展示如何利用它们来增强类的功能性。最后,我们将讨论在实际应用中应注意的事项,以确保正确和高效地使用这些方法。
|
9天前
|
存储 JSON API
实战派教程!Python Web开发中RESTful API的设计哲学与实现技巧,一网打尽!
在数字化时代,Web API成为连接前后端及构建复杂应用的关键。RESTful API因简洁直观而广受欢迎。本文通过实战案例,介绍Python Web开发中的RESTful API设计哲学与技巧,包括使用Flask框架构建一个图书管理系统的API,涵盖资源定义、请求响应设计及实现示例。通过准确使用HTTP状态码、版本控制、错误处理及文档化等技巧,帮助你深入理解RESTful API的设计与实现。希望本文能助力你的API设计之旅。
31 3
|
11天前
|
中间件 API 开发者
深入理解Python Web框架:中间件的工作原理与应用策略
在Python Web开发中,中间件位于请求处理的关键位置,提供强大的扩展能力。本文通过问答形式,探讨中间件的工作原理、应用场景及实践策略,并以Flask和Django为例展示具体实现。中间件可以在请求到达视图前或响应返回后执行代码,实现日志记录、权限验证等功能。Flask通过装饰器模拟中间件行为,而Django则提供官方中间件系统,允许在不同阶段扩展功能。合理制定中间件策略能显著提升应用的灵活性和可扩展性。
14 4
|
11天前
|
SQL 安全 Go
SQL注入不可怕,XSS也不难防!Python Web安全进阶教程,让你安心做开发!
在Web开发中,安全至关重要,尤其要警惕SQL注入和XSS攻击。SQL注入通过在数据库查询中插入恶意代码来窃取或篡改数据,而XSS攻击则通过注入恶意脚本来窃取用户敏感信息。本文将带你深入了解这两种威胁,并提供Python实战技巧,包括使用参数化查询和ORM框架防御SQL注入,以及利用模板引擎自动转义和内容安全策略(CSP)防范XSS攻击。通过掌握这些方法,你将能够更加自信地应对Web安全挑战,确保应用程序的安全性。
39 3
|
11天前
|
网络协议 开发者 Python
网络编程小白秒变大咖!Python Socket基础与进阶教程,轻松上手无压力!
在网络技术飞速发展的今天,掌握网络编程已成为开发者的重要技能。本文以Python为工具,带你从Socket编程基础逐步深入至进阶领域。首先介绍Socket的概念及TCP/UDP协议,接着演示如何用Python创建、绑定、监听Socket,实现数据收发;最后通过构建简单的聊天服务器,巩固所学知识。让初学者也能迅速上手,成为网络编程高手。
45 1
|
14天前
|
缓存 Python
探索Python中的装饰器:原理与应用
本文深入探讨了Python中装饰器的概念,从基本定义到实际应用进行了系统性的阐述。通过实例展示了如何利用装饰器来增强函数功能,同时详细解释了其背后的运行机制和实现原理。此外,文章还讨论了装饰器在软件开发中的实际应用场景,为读者提供了实用的编程技巧和最佳实践。
下一篇
无影云桌面